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Introduction 
Virtual environments rely heavily on 3-D content to provide aesthetics and meaning. As computer motherboards hold more transistors 
and pick up speed following Moore’s Law, graphics co-processors increase their specialization in 3-D rendering, and 3-D model 
demand grows exponentially. Historically, 3-D models are loaded into virtual environments from external files hand-crafted by 3-D 
modelers using popular modeling tools such as 3D Studio Max, Maya, AutoCad, and SoftImage. Model files are either pre-loaded 
before display (such as in the Virtual Playground system at the UW HIT Lab [1]), or streamed across the network and loaded upon 
demand (such as in the popular ActiveWorlds platform [2]). Modeling tools implement procedural algorithms for modelers to use in 
the modeling process, but those algorithms create models that are still saved as the external files that the virtual environments load.  
 
This paper investigates the opportunity to incorporate procedural algorithms directly into the virtual reality rendering systems. Instead 
of sharing models, participants in a virtual environment can share parameters. These parameters can grow the models inside of the 
virtual environment instead of loading them from outside. Nature suggests many approaches for parameter driven virtual world 
building, especially when considering the field of genetics. This paper considers plants as a case study. Lindenmayer Systems (L-
Systems) are a popular botanical framework used procedurally by computer scientists for growing sophisticated plants [3] and 
Cambrian era animals [4] from simple instruction sets. Other techniques include fractals, Gaussian equations, Gerstner waves, and 
Navier-Stokes equations, all of which are used by special effect movie houses to grow digital images needed for movie scenes. In this 
paper, we review L-Systems and evolutionary processes before tying them together to create a wide range of 3-D modeled content 
after a short discussion of the reasons for doing so. 
 
Potential Benefits of Procedural Modeling for Virtual Environments 
Shared distributed virtual environments require sophisticated engineering techniques to provide a near real-time experience for all 
participants. A shared clock keeps participants in synch. Traditional 3-D model loading takes an annoying amount of time and 
provides delays when new models load in response to participant actions. Distributing model parameters instead of explicit model 
geometry can cut bandwidth and bus requirements to negligible levels. For example, a plant model with 12,428 polygons spread 
across 1,222 unique objects (stem segments, leaves, and floral petals) creates a structured VRML97 file sized over 1,000,000 bytes 
while the equivalent parameters-only file stores in a mere 500 bytes (a 2000:1 ratio). Given that ratio, the same bandwidth 
communication channel could send one complete plant model file or parameters for 2000 plants to appear in the world.  And, just as 
life’s DNA instruction set produces the recipe for growing all the elaborate creatures found on Earth, model parameter files can 
efficiently store the instructions for sophisticated 3-D models. Although the size of model instruction sets today is a miniscule 
percentage of the genomes for living, respiring plants and animals, savings in storage and information distribution costs are relative.  
 
Nature provides a fine example of storage efficiency unmatched by computer graphics file format designers. DNA combined with 
evolutionary process creates great variety in beings. Procedural models can similarly create variety from simple changes to the model 
instruction set. Combinatorial mathematics assures great complexity as long as a significant number of model characteristics are 
procedurally derived. Even when every parameter lacks a full range of realistic values, a sixteen-parameter model approaches 1018 
possible configurations. Procedural models make three important contributions to virtual environment implementation: network 
savings, model variety, and model complexity.  
 
Procedural Plant Growth Algorithms for 3-D Modeling 
Plants have often been at the forefront of genetic research, leaving us with the hotly-debated, emerging, societal issue of so-called 
“Frankenfoods”, genetically altered plants that provide larger yields of edible mass. Gregor Mendel first solved the mystery of 
inheritance by experimenting with pea plants in the 19th century, leading to the eventual addition of the words allele, dominant, 
recessive, and diploid to common English vocabulary [5]. Beginning in 1968, Aristid Lindenmayer studied and published works 
describing the process by which plants develop [6]. Although his work evolved in academic circles for twenty years before computer 
scientists applied his ideas to generate computer graphics, use of L-Systems in computer graphics blossomed in the 1990s, expanding 
its reach from 2-D renderings to 3-D models. Dr. Przemyslaw Prusinkiewicz at the University of Calgary and his peers has grown the 
field of Biological Modeling and Visualization exponentially in the last ten years [7]. More and more pure botanical research has 
provided inspiration for the development of virtual plants.  
 
Some of the more interesting developments include the consideration of the phenomenon of Spiral Phyllotaxis, aging models for the 
decomposition of plants over time, ecosystem models for simulating whole fields of wildflowers, and a modular approach to a 
symbiotic system where environmental parameters affect plant development and plant development effects the environment. A quick 
survey of work done follows. 
 
In 1992, Deborah Fowler investigated the use of collisions while implementing the process of Spiral Phyllotaxis as a guideline to 
creating virtual plant models [8]. Phyllotaxis is a well-documented phenomenon in plants that determines where primordia (seeds, 



petals, nuggets etc.) are located on a receptacle (sunflower, coneflower, corn ear) using a fixed divergence angle of 137.5 degrees. 
Primordia are packed following the rules of phyllotaxis until they collide with each other. Phyllotaxis has been incorporated into all 
plant development simulation systems as a result of Fowler and others’ work.  In 1996, Radomir Mech devised a system design where 
virtual plants could be modularly developed through interaction with other environmental modules [9]. Using such a system, virtual 
plants don’t grow in a vacuum, but instead have their parameters affected by dynamic environmental parameters. For example, if the 
environment experiences a drought, plant growth is stunted and body structures wilt. The communication goes in both directions. If a 
species of plant becomes successful in growing and respiring, additional oxygen is passed back to the environment. In 1998, Oliver 
Deussen led a team that focused on realistic modeling of plant ecosystems [10]. Starting with a terrain specification and environmental 
characteristics such as soil humidity, the researchers’ virtual plant engine distributed plant species across the terrain. With the engine 
running on a supercomputer array, a computer interface afforded a user the ability to zoom in and zoom out while investigating the 
component wildflowers that had grown to fill the terrain.  
 
The Vehicles of Evolution 
Once procedural plant models are driven by parameters to a virtual plant growth engine, nature can provide additional inspiration in 
evolving new plants from existing parameter lists. The process mimics nature by repackaging parameter lists into psuedo-genomes 
that then simulate physical plant genomes. Once the parameters are in a genome format, the forces of evolution can be written 
algorithmically in the virtual plant application engine to provide a variety of plant offspring. 
 
Chris Colby of Boston University classifies observed phenomena of genome evolution into five processes: mutation, recombination, 
gene flow, genetic drift, and natural selection [11]. All five processes can be simulated in lines of code. A quick mention of each is 
warranted here. 
 
Mutation occurs when some external process (such as a cosmic ray) interferes with the normal functioning of DNA within a living cell 
and forces a change in its chemical makeup. The changed structure then can change the mutated structure’s function. Mutation usually 
does more harm than good to the affected entity but in nature, on average, only about 1 x 10-11 mutations occur per base pair of DNA 
per generation.  
 
Recombination occurs most spectacularly through meiosis during sexual reproduction. During meiosis, the mother provides half the 
offspring’s genetic material and the father provides the other half. So, the next generation’s DNA varies quite dramatically from that 
DNA of the mother or father’s individual. 
  
Gene Flow occurs when some process (such as a mosquito drawing blood) transfers genetic material from one species to another and 
that material makes its way into the DNA of the target species. The process has been documented between species of fruit flies with a 
parasitic mite as carrier. 
 
Genetic Drift occurs as a purely statistical process. As a gene pool reproduces and survives in an environment where death is caused 
by events outside its control, chance determines which genes continue to reproduce and which genes die out.  
 
Natural Selection refers to the process where a gene pool's makeup changes based on reproducing and surviving in an environment 
where the individual does have some control over their survival. Those individuals with genes that are better suited to the environment 
tend to reproduce more often than those less suited. Volumes have been written about the sub processes of natural selection: ability to 
feed, ability to avoid predators, sexual selection, etc. as Charles Darwin intrigued the world with his study of life’s struggle in the 
Galapagos Islands of South America.  
 
My Contribution 
To further along research in the area of modeling virtual plants, I chose to make three contributions: to enhance a popular L-Systems 
engine to take virtual plant genomes as input, to add a vase genome to the plant model to suggest use in artistic expression, and to 
explore gene pool variety using lessons from evolutionary process. The remainder of this paper explains work done and provides 
results and discussion. 
 
Enhancing the LParser Engine to Take Virtual Plant Genomes As Input 
LParser is a popular virtual plant generation system in the public domain created by Laurens Lapre. LParser reads an L-System 
description file and processes it into a 3-D form that can then be output in several mainstream model formats including VRML, DXF 
and POV [12]. I investigated the source code looking for opportunities to change the input to a model genome instead of an L-System 
description. After investigating 50 attractive plant description files, I determined the best for my purposes was one obtained from C.J. 
van der Mark of Holland. C.J.’s Flowers1.ls file creates the three flowers with reddish stems presented as Figure 1 below.  
 



 
Figure 1 - Rendered VRML97 output of Flowers1.ls 
 
I dissected the Flowers1.ls description file to determine which statements (also called rules) in the file influenced which part of the 
final plant model form. My conclusions were as follows:  
 
Description File Rule . . . General Conclusion 
 
q  
q=&(30)p^(30)p^(10)p  
p=[t(-0.2)!Ft(-0.2)!Ft(-0.2)!Fo]  
o=>y>(60)y>(60)y>(60)y>(60)y>(60)>y  
a=[&(10)s]a  
y=[a&(125)w]  
w=Z[d][h]'^(30)cw  
d=[+d{.].x.}  
h=[^(5)-h{.].x.}  
x=^(5)ggx  
s=[c(5)^(60)!'Ft(0.6)ZZt(0.6)?(10)ZZ]  
F='(1.3)F'(.77)  
@ 

 
The Axiom (all descriptions begin with the Axiom)  
q sets the number of stalks and their placement  
p creates the stalk (with t providing a gravity force)  
o sets the number of petals around the flower  
a sets the overall shape of the petal  
y is a component of the petal shape  
w is a component of the petal shape  
d is the right hand side of the petal  
h is the left hand side of the petal  
x pushes the vertex formation of the petal forward  
s creates the stamen  
F directs the overall size of each forward instruction  
@ is the end of file marker  

 
Because L-Systems incorporate recursion, the processes by which petals and leaves are generated are similar with the difference being 
that leaves are created in earlier iterations and are colored green, while petals are created in later iterations and are brightly colored at 
the red and violet ends of the color spectrum (not that virtual plants have to conform to the stereotypes of physical plants). Thinking 
that through, I realized that I could add an additional set of rules to the Flowers1.ls description file that would generate the plant 
leaves independently of the flower petals. 
 
I then generalized the description file to substitute variables where fixed coefficients had been used by C.J. and added interesting 
features from other description files in order to provide a wider possibility of form from the genome input engine. I put component 
plant parts into for loops to be able to vary the number of parts that would be created. For example, to calculate the number of stalks in 
the model, I wrote the following snippet of code  
 
for(counter=1;counter<=numstalks;counter++) {  
 strcat(rule[0], "^(20)S");  
}  
 
where the first rule would concatenate one stalk (represented by S for each additional stalk up to the number of stalks stored in the 
model genome. I then derived the positioning of the next stalk from the previous (represented by ^ from another value stored in the 
genome). I continued adding coding branches and loops, replacing coefficients with variables, and adding new features from other L-
System description files until I had produced a rich enough system to let each component of my plant genome affect a wide-range of 
possible plants. 



An example plant genome is stored as a single line text string. For example: 
 
YY|NN|3|0.3|0.3|0.0|0.5|YY|NN|YN|NY|2|4|YY|NN|YN|NY|3|0.2|0.6|0.15|10|1|YY|NN|YN|NY|4|0.6|0.2|0.1 
 
where each pipe symbol separates an allele pair or simulated gene from its neighbors. Form that is driven by dominant or recessive 
alleles is stored as a series of NN, NY, YN, or YY pairs where Y is the dominant trait and N the recessive. Form that supports color is 
stored in three floats contributing red, green, and blue components of light in that order. All other values are single floats or integers 
that substitute into rule variables in the virtual plant generation process. Figure 2 lists the mapping of the stored genome by 
responsibility during virtual model development. The genome focuses on three of many potential plant body parts: The stalk; the 
leaves, and the petals.  
 

 
                                                 Figure 2 – One Possible Virtual Plant Genome 
 
Each component plant part in the left column of Figure 2 is derived from data stored in the format specified in the right column of 
Figure 2. The right column may be more understandable after reading the section entitled “Exploring Gene Pool Variety in Virtual 
Plants” below.  
 
Adding a Vase Genome 
In order to differentiate my work from those who thoroughly understand botany, I decided to create a vase genome as well to suggest 
application in creating objects of artistic expression. Virtual plants need not be realistic to be interesting or entertaining. My vase 
genome is stored as a simple single-lined text string like: 
  
750^25^50^75^100^-90^-80^-70^-60^-50^-40^-30^-20^-5^5^5^5^5^5^5^5^Male^0.8^0.8^0.2^1.0^0.8^0.2^YN 
 
where each value is substituted into a vase generation process I added to the LParser engine. Female vases are completely circular in 
any top view cross-section while male vase top view cross-sections have corners. Much of the vase genome simply stores the radius of 
the vase at different heights in the model. The two sets of RGB color values are identical if the vase carries two recessive alleles for 
stripes (and the second triplet is ignored). The complete vase genome is shown in Figure 3.  



 
                                                Figure 3 - The Vase Genome 
 
Exploring Gene Pool Variety in Virtual Plants 
Having succeeded at generating 3-D plant models from plant genomes, I decided to put in place a process to generate new plant 
genomes from existing plants. I added three new processes to simulate gene pool processes described earlier.  
 
To implement mutation, I represented each numeric value in the genome as a base two binary number and flipped random bits. An 
interesting example was one where an orange petal genome and red petal genome produced next-generation petals that were brown. I 
implemented an averaging process (with mild noise added) to create offspring petal color and looking at the results came to the 
conclusion that the most-significant bit of the child petal’s red color component had been flipped from 1 to 0 (thus reducing the 
amount of red dramatically). 
 
To implement recombination, I created a merging process where two plant genomes could come together to create a new plant 
genome. Those traits driven by dominant and recessive alleles simulated meiosis by each randomly providing one of the two base 
alleles to the next-generation plant. Non-allele specified traits were merged using an averaging process with noise. I adjusted the noise 
threshold such that most of the time the offspring trait value would fall between the range of both parents. Yet, values outside of the 
range (especially for narrow ranges) were statistically possible at two standard deviations from the norm.  
 
To implement genetic drift, I ran multiple generations and watched for drift. When values drifted toward too narrow a value 
consistently (symptomatic of poorly designed code), I reworked the engine to provide a wider range of potential drift. In considering 
Stephen Rooke's process for genetically evolving art paintings, I agreed human like and dislike were representative forms of 
environmental pressure simulating natural selection [13]. Although I haven't personally applied my aesthetic as a genetic pruning 
mechanism, I watched the process in action when I installed my engine at a display booth during April 21-May 6, 2001 at the Boston 
Cyberarts Festival [14] in Boston, MA. More than 700 visitors to the booth were able to mate two virtual plants and decide if the 
offspring should survive to mate themselves. 
 
Visitors experienced the plants by using the University of Washington HIT Lab's Magic Book technology. The Magic Book allows for 
a mixed reality presentation so visitors are able to see the 3-D virtual plants overlaid on video processed from their real world 
perspective [15]. Figure 4 shows a participant placing two plants together to mate them at the Boston Architecture Center exhibition 
on April 26, 2001. 
 
Examples 
Figure 5 shows the visual effects of recombination from alleles that define leaves on stem or not. The first two columns show the 
visual effects of the allele contribution from both parent plants. The third column shows the visual effect in the child. Since having 
leaves on the stem is a dominant trait in the system, a plant must possess two recessive alleles in order to display the recessive trait 
(lack of leaves on the stem).  
 



 
         Figure 4 - Mating Two Plants at the Boston CyberArts Festival 

 
          Figure 5 - Effect of Recombination of Alleles on Stem Leaves 



Figure 6 shows the effect of mutation in a color parameter. The left most flower has orange petals. The center flower has red petals. 
Their offspring flower is brown through the effect of mutation flipping its most significant bit in the petal red color component.  
 

 
                                   Figure 6 - Example of Mutation in the Red Color Component 
 
Figure 7 shows an example of the procedural plant and vase engine output. The engine creates standard VRML97 output files that can 
be viewed with a VRML97-compliant viewer. Figure 7's example demonstrates a male vase with a three-stalked flower model. The 
model shows most dominant traits, yet is simplified by the limited numbers of each body part. Plant models generated by the engine 
can be significantly more crowded as the number of stalks, leaves, and petals increases. 
 

 
Figure 7 - A 3-D Model Created by the Engine 
 
Conclusions and Future Work 
I found playing with parametric model generation engines intoxicating and innately creative when the goal was not much more than 
exploration. Many of the decisions I made and implemented in code are arbitrary in their purpose. The process felt more like artistic 
expression than scientific discovery and yet the process was inspired by readings in the sciences. Though there are 1020 possible 



models generated by my simple genomes (before applying noise algorithms), I still have only touched an infinitesimal percentage of 
all possible plants generated from L-System rules. Playing with L-Systems has taught me to more deeply appreciate nature and the 
variety life process produces without any necessary conscious guidance.  
 
Speculation that evolutionary process can evolve new processes in the digital realm appears to be a hot topic based on the number of 
books one can find related to the subject. Investigators such as Tom Ray of the University of Oklahoma continue to opine that great 
things will come of digital evolution seeded properly and left to its own device [16]. Such popular science discussion often 
overshadows the significance of what we already know how to do. Generating a wide variety of complex 3-D models to enhance our 
virtual environments in a real-time system seems to be a worthwhile goal on its own accord.  
 
Through my explorations for this paper, I have gained a deeper understanding of how digitally produced movie sets, such as the one 
used recently in The Grinch Who Stole Christmas, will continue to evolve to become more interesting and more realistic at the same 
time. If variety truly is the spice of life, these parametric modeling engines are worth their weight in gold. As long as bandwidth 
continues to be a limiting bottleneck in real-time, shared virtual environments, research in this field should be considered important 
and invaluable. Other processes of nature in the chemical and physical sciences should be reaped as inspirational models for engine 
development. 
 
Certainly both the plant and vase genomes could continue to be expanded to enact an even finer level of control during virtual plant 
generation. But, perhaps, improvement of the engine itself should come first. Currently, the engine produces plant body parts that have 
no mass and thus can intersect in unfortunate places. Often, the output in that case appears immediately ugly to the eye. Sometimes, 
the effect is desirable, especially when the intersecting polygons are near the same plane or are of the same color. Collision detection 
techniques that are well understood algorithmically today could be incorporated to preclude those situations where the virtual plant 
immediately appears unattractive.  
 
Of final interest are the comments made by participants who mated plants at the Boston CyberArts' Festival. Suggestions participants 
were especially keen on seeing realized included:  
 

• Applying the genome from a grid of the Magic Book patterns whereby each zone of the pattern could directly represent the 
state of the genome (and where participants could draw patterns at the exhibit).  

• Networking the application so multiple participants could adjust the patterns across the Web to see what plants would result.  
• Running the engine on a higher performance platform so the plants could appear more realistic.  
• Applying the engine to avatar generation techniques (using the general public as bases for genomes).  
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