
3-D Collaborative Multiuser Worlds for the Internet
Bruce Donald Campbell

Rensselaer Polytechnic University, University of Washington

ABSTRACT
3d Multi-User Collaborative Worlds For The Internet is a Masters
project looking into the potential of using VRML 2 and Java to
create multi-user worlds on the Internet to foster collaboration
between participants. The author reviews the history of
technology-enabled collaboration and then reviews the current
technologies available for creating interactive 3D collaborative
worlds using the Internet to connect participants.

The author then explains his own approach to creating a flexible
architecture in which virtual participants can share rules, objects,
and actions between themselves while collaborating in a virtual
world. The author suggests the importance of rules negotiation
and design participation to making collaborative worlds succeed.
The author discusses a collaborative multi-user 3D world of his
design and then provides results on the success of the world after
having subjects spend time together in the world working towards
a pre-defined objective.

PROBLEM STATEMENT
A collective vision for a shared, 3-dimensional, Internet accessible
cyberspace is rapidly becoming a reality in Silicon Valley.
Successful technology companies are coming together and
creating standards to support a cross-platform, cross-server,
shared cyberspace. Living Worlds is an example of such a
standard. Living Worlds focuses on standard connections of a web
browser to the Internet and the requirements of a server to
communicate with a compatible browser in a standard manner.
Many 3D web browsers have recently incorporated an external
interface API that will allow others to write the scripts that make
cyberspace come alive. Server technology is rapidly improving
the shared behavior routines that allow one browser to see the
effects of the actions of another cyberworld visitor. So, its time to
start building the worlds this technology will support. How
effective will we be able to communicate, educate, and entertain
ourselves in cyberspace over an Internet connection? The question
is a wide-open one. It is time to begin to build worlds and test out
our abilities to collaborate in them.

PROBLEM SIGNIFICANCE
Collaborative, shared digital worlds have been created in the past.
Many have been created on dedicated networks such as the
military's DIS network, Japanese research lab networks, or
university laboratory networks. The shared spaces were always
created at great cost and with little opportunity to make them
available to the mass public. The commercialization of the
Internet and the advent of the World Wide Web have made public
availability to computer networks a possibility. The Internet is not
a reliable deliverer of information. The attempt to port yesterday's
shared digital worlds have failed. These applications required
reliable and rapid delivery of information. Today, the technology
is being built from the bottom up to work with the inherent
weaknesses of Internet information delivery. The goals may be the
same as cyberspace projects of the past, but the delivery strategies
are quite different.

We have an opportunity to give cyberspace access to millions of
world citizens. Some of these people will be able to truly

participate in a cybersociety where they have struggled to
participate in our society to date. Many physically challenged
individuals are not mobile. They can't easily run out and
participate in a spontaneous societal event such as a political rally
or sports team celebration. Even a typical world citizen can't
physically get to where the educational and entertainment
opportunities are available. Instead, they settle for struggling to
find the best opportunity in their own neighborhoods. In too many
neighborhoods the best opportunities are not near good enough.
They are limited by the experience and knowledge of the
neighbors that live there.

The technologies needed for cyberspace are falling into place. It is
time to build cyberspace as it should be built to reach out to the
needs of our society. It is everyone's responsibility to build it
right. I want to do my part by understanding the technology,
trying it out, and providing feedback through a significant
project/thesis paper. The Living Worlds standard addresses
networking, user interface, application programming interface,
and avatar representation issues. I will be learning specifics that
will have broad, transferable teachings for me.

1 INTRODUCTION
A collective vision for a shared, three-dimensional, Internet
accessible cyberspace is rapidly becoming a reality in Silicon
Valley. Successful technology companies are coming together and
creating standards to support a cross-platform, cross-server,
shared cyberspace. Living Worlds is an example of such a
standard. Living Worlds builds upon standard connections of a
Web browser to the Internet to provide a way of sharing 3D
virtual worlds with multiple participants. Many Virtual Reality
Modeling Language (VRML) based, 3D Web browsers have
recently incorporated an External Authoring Interface (EAI) or
Application Programming Interface (API) that allow others to
write the scripts that make cyberspace come alive. Server
technology is rapidly improving the shared behavior routines that
allow one browser to see the effects of the actions of other
cyberspace visitors. So, it seems time to start building the worlds
that 3D graphical technologies will support. How effectively will
we be able to communicate, educate, and entertain ourselves in
cyberspace over a typical Internet connection (using a 28.8 kbs
modem)? The question is a wide-open one. It is time to begin to
build worlds and test out our abilities to collaborate in them.

Collaborative, shared digital worlds have been created in the past.
Many have been created on dedicated networks such as the
military’s Distributed Interactive Simulation (DIS) network,
Japanese research lab networks, or university laboratory networks.
Past attempts at electronically mediated shared spaces were
always created at great cost and with little opportunity to make
them available to the mass public. The commercialization of the
Internet and the advent of the World Wide Web have made mass
public access to computer networks a possibility. The Internet is
not a reliable deliverer of information and, to-date, has not been
designed to be one. The attempt to port yesterday’s shared digital
worlds have failed. Past applications have required reliable and
rapid delivery of information. Today, the technology is being built
from the bottom up to work with the inherent weaknesses of
Internet information delivery. The goals may be the same as

cyberspace projects of the past, but the delivery strategies are
quite different.

We have an opportunity to provide cyberspace access for millions
of world citizens. Some of these people will be able to truly
participate in a cybersociety where they have struggled to
participate in our society to date. Many physically challenged
individuals are not mobile. They can’t easily run out and
participate in a spontaneous societal event such as a political rally
or sports team celebration. Even an average world citizen can’t
always physically get to where the educational and entertainment
opportunities are available. Instead, they struggle to find the best
opportunity in their own neighborhoods. In too many
neighborhoods the best opportunities are not nearly good enough.
They are limited by the experience and knowledge of the
neighbors who live there.

The technologies needed to realize a collaborative cyberspace are
falling into place. It is time to build cyberspace as it should be
built to reach out to the needs of our society. It is everyone’s
responsibility to build it right. I am doing my part by
understanding the technology, trying it out, and providing
feedback through this project paper. Living Worlds and other 3D
cyberspace standards address networking, user interface,
application programming interface, and avatar representation
issues. I am learning concepts that will have broad, transferable
teachings for me.

This project report has six chapters and this introduction. The
seven chapters are organized in three main sections. In this first
section, which includes Chapters 1 and 2, I provide an overall
context for my work, review the history of technology supported
communication and discuss what adding a third dimension to
computer displays affords us.

In the second section, which includes Chapters 3 and 4, I review
how the Internet assists collaboration between human beings, the
current state of the art in Internet based, shared 3D virtual worlds,
and various strategies for providing intuitive interfaces to
computer users to help them interact in a shared virtual world.
Basically, Chapters 3 and 4 document the current technologies I
had available to me from which to build my own multi-user,
shared, Internet-based, 3D virtual world.

Finally, in the last section which includes Chapters 5, 6, and 7, I
review the goals for the shared world I built, review its design,
and document its use through a simple pilot test that demonstrates
its fit for purpose. Chapter 5 reviews the design decisions I made,
the purpose of the world, and an explanation of the interface I
provide to world visitors. Chapter 6 documents changes I made to
prepare the world for a pilot test and documents the test design.
Chapter 7 concludes this paper with various overall thoughts, pilot
test results, and conclusions drawn from my work on this project.

2 COLLABORATION THROUGH TECHNOLOGY – A HISTORY OF
CHOICES

Walk into any Fortune 500 company and talk to an employee —
chances are he or she is scheduled to be involved in a meeting
within the next four hours. Meetings are prevalent in corporate
America because collaboration is critical to organizational
success. Collaborative skills are critical for most corporate
employment positions. This makes common sense in the
information age. As the amount of available information
increases, the individual is less able to digest it all to make the
most intelligent decision when faced with a problem or

opportunity. A corporation’s collective knowledge is spread out
among tens, hundreds or thousands of individuals. The better all
desired corporate knowledge is mapped to different job positions,
the better the chance the organization has of proactively
optimizing its course of action. As a result, corporate knowledge
is dispersed through individuals with specialties such as law,
finance, engineering, human resources, and marketing. When a
problem or opportunity comes to light somewhere within the
organization, the course of who collaborates with whom makes a
difference in the resultant action taken by that organization. There
is a best possible action that is more probable of coming to light if
the right people collaborate to discuss the solution. The same
forces of collaboration are there when organizations collaborate
with other organizations to promote an industry or develop a
mutually beneficial technological standard.
Technology has always been involved in enabling better
collaboration. Technologies are being developed faster than ever
before. Collaboration has made faster project timelines possible.
As an example, take a look at how the Virtual Reality Modeling
Language (VRML) standard took shape in such a short time
frame. VRML is a computer language that defines three-
dimensional (3D) models. Or, as an even more current example,
take a look at the Living Worlds standard being promoted to
standardize how we interact with VRML worlds and provide a
more consistent 3D cyberspace. The Living Worlds standard
setting process is a case study in collaboration. Venture capitalists
have strongly suggested a deadline by which the 3D cyberspace
community shows a viable market for their technologies in order
to obtain ongoing venture capital. At the Earth to Avatars
conference in San Francisco in October 1996, the technologists
chanted in unison, “a one billion dollar industry by the year 2000”
as a goal for building multi-user worlds and communities. In order
to have a shot at that goal, those involved realize they need to
collaborate to decide the norms on which the technology will be
built. There is no time for each individual or organization to
follow their own course of action for two years and then try to
market their solution. In fact, those involved with Living Worlds
are trying to map the knowledge needs of Living Worlds to
different organizations. Of interest is the speed and decisiveness
blaxxun interactive demonstrated in changing their business
direction to focus solely on multi-user servers. They had been
developing a competent and compelling VRML client, Cybergate.
Now, they trust Netscape Communications Corporation (NCC)
and Silicon Graphics, Inc. (SGI) to develop the technology for the
3D viewer. The Living Worlds consortium includes companies
and individuals with specialties across many knowledge bases.
Anthropologists speak of how Living Worlds must provide an
appropriate culture for participants. Physicists speak of how
shared virtual worlds must follow basic laws of physics in order to
attract visitors. Financiers advise what is necessary in order for
people to be willing to spend money in cyberspace. All these folks
are collaborating because they have something to say and because
it is easy to do so. The ease in which we collaborate today has
dramatically affected the frequency in which we do so.
Technology has made it easier. Telephone lines have
interconnected us worldwide. Computer networks have
interconnected us through our computers. We speak of “off-line”
meetings where information is discussed through voice mail
messages, answering machine messages, and computer databases.
There is no specific meeting time in which a collaborator must be
present. Instead, there are deadlines by which your word need be
voiced in order to have an effect on a decision.

The ability of an organization to take advantage of collaborative
technologies seems to be dependent on its culture. Many of the
studies on the return on investment of collaboration enabling

technologies are as inconclusive as studies on management styles.
For certain organizational cultures, collaborative technologies
have made a tremendous difference in organizational success. In
fact, those organizations quantify returns on collaborative
technology investment of over 200%. The technology seems to do
best within a collaborative culture although the level of computer
and language skills of each collaborator is a key determinant also.
Looking out at society today, I see more information and
improving computer skills. It is only natural to project those
trends into the future and expect more collaboration and more off-
line meetings. It makes sense to research the technologies that
will enable collaboration tomorrow.

What aspects of a technology make it supportive of collaboration?
The review that follows will be discussed in relation to the
characteristics of collaboration friendly technologies outlined in
Table 2.1. These characteristics are the characteristics I have
found mentioned most often in various white papers that support
the need for collaborative technologies.

Table 2.1 Characteristics of Collaboration Enabling Technologies

Efficient — allows immediate sharing of communication
Organized — allows information to be shared in a logical
manner Timely — keeps information content current and
appropriate
Available — can be used 100% of the time
Access — easy to get access to
Time Independence — collaborate at any time
Place Independence — collaborate anywhere
Self-Documenting — tracks the history of communication
as a by-product
Emotional — captures the emotion of the collaborator
Imaginative — captures the imagination of the collaborator
Brainstorm Enabling— supports new idea generation
Iterative — allows iteration toward better ideas and
understanding
Indexed — allows past communications to be easily
reviewed.
Scalable — allows many to collaborate simultaneously
Precision — allows for a precise representation of facts
Immersive — captures the full attention of the senses

Some of these characteristics are largely subjective. For example,
rating a technology in terms of its ability to support emotional
communications is not an exact science. When I do rate a
technology based on a subjective characteristic, much of the rating
is my solely my opinion from using the technology on multiple
occasions.

The remainder of this chapter looks at the history of technologies
that have helped foster collaboration between human beings. We
should not ignore the human aspects of collaboration. Before I
review the technologies that help us collaborate, I must mention
the collaborator. Collaboration is a skill just as negotiation,
arbitration, communication, and persuasion are skills. Humans can
be taught to enhance these skills. Child development researchers
have found that we develop collaborative skills early on in life,
yet learn to discredit some of those skills to survive in a
competitive world. To prepare for work at a collaborative
organization, our youth require an education that is consistent in
providing opportunity to collaborate and that rewards
collaborative behavior when demonstrated appropriately. There is
a balance that can be developed such that the individual is both
personally enterprising, yet organizationally collaborative. So, the

logic follows that a collaborative individual will do well in
promoting a collaborative organization that will take advantage of
collaboration-enabling technologies.

I will include collaborative skill building technologies in my
collaboration enabling technologies review. Much successful
game playing requires collaborative skills (Parker Brothers’ board
game Risk being a well known example) and therefore I will
include technologies such as Multi User Dimensions (MUDs) as
part of my review. They enable people to interact in a shared
experience that can be for entertainment, education, or group
communication.

I will review eleven technologies that enable collaboration. The
timeline in Figure 2.1 depicts them all in terms of the year they
were developed. Each technology added a new capability to
technology-assisted collaboration. Paper, telephone, Email,
MUDs, video games, DIS, Lotus Notes, Inter Relay Chat,
Greenspace, and Avatar Based Multi-user worlds all have had a
significant impact on making technology more useful for
collaboration. I will also review video conferencing that has been
around since the day of the first video telephone which failed
miserably.

 Figure 2.1 Collaboration Enabling Technologies Timeline

2.1 Paper

According to the Mead Corporation, ancient Egyptians invented
the first substance that crudely resembled paper around 4000 B.C.
Papyrus, as they called it, was a woven mat of reeds, pounded
together into a hard, thin sheet. Afterward, the Ancient Greeks
used another paper-like substance made from animal skins. Paper
as we know it today was invented by Ts'ai Lun, a Chinese court
official, in A.D. 105. [1] Paper was important to the evolution of
collaboration as it enabled communication among multiple people
who no longer had to be in the same place at the same time in
order to communicate. Paper was the first significant
improvement to the collaborative process since language had
evolved and was used for effective communications. Paper
facilitated the evolution of the written word and improved
dramatically our knowledge of history by creating the medium for
its archival. Paper today is still a significant part of many
collaborative processes. It is inexpensive, durable, expendable,
recyclable, and continues to evolve. Still, the most sophisticated
collaborative teams use paper to review information on the bus,
on the beach, and in reports created for a mass audience.
Individuals without computer skills continue to be given the
option of reviewing paper output and providing paper input to a
collaborative process.

Evaluation of paper. Paper falls short as an efficient or organized
collaboration technology. Multiple copies of the same basic facts
are produced and rearranged in order to provide a different
sequencing. Written text is sequential and requires additional
indices in order to be randomly accessed. Paper indices provide an
appropriate page number, but a collaborator still has to physically
turn to the referenced page. Paper is not necessarily timely. As
improved or updated copies of a paper-based information source
are created, the older paper documents still physically exist and
become sources of inferior information. Paper is readily available
and widely accessible. Paper provides time independence to
collaboration, but is place dependent as paper consists of physical
atoms that must exist within the collaborator’s eyesight. The
author can use paper anywhere, but the reader is clearly restricted
in obtaining access. Paper has been used often solely for its self-
documenting ability. A blank sheet of paper provides an outlet for
emotion, imagination, and brainstorming, yet relies on the written
skills of the collaborator. Paper is a poor medium for iterative
tasks and requires significant work to be indexed. Paper is not
very scalable although a paper copier can quickly produce copies
of results of the collaboration process. Paper can be used to create
precise communications, but it is a 2D medium that has trouble
representing three dimensions. Reading words on paper and
writing on paper are not especially immersive experiences, yet the
act of reading and writing does seem to occupy the mind’s
attention such that the other senses are ignored to some extent.

2.2 Telephone

Alexander Graham Bells successfully demonstrated his telephone
invention on March 10, 1876. The telephone advanced the spoken
word as paper had advanced the written word. At the time,
through a postal service, the written word could be shared among
collaborators who never had to meet. The telephone advanced that
unique luxury to the spoken word and added an additional benefit
of a more instantaneous collaboration.

Evaluation of the telephone. The telephone is a more efficient
technology than paper with respect to immediacy. Over long
distances, information can be shared as fast as electricity can
travel the distance by wire. Yet, the telephone does no more than
paper to organize information as information is provided
sequentially. The timeliness of information shared by telephone is
only as current as the last conversation. Telephone availability is
near 100% in most first world countries, yet still growing in third
world countries. Telephone access has increasingly improved
since 1876 although accessibility started especially slow in its
early days. Accessibility is taking another leap with the advent of
the cellular telephone. Unlike paper, the telephone requires some
time dependence although voice mail has eliminated much of that
requirement. The place independence of the telephone is related to
its accessibility and the increasing development of the number of
cellular phone “cells” that carry the communications is changing
the place dependence scale. For a live conversation, the initiator
can be anywhere a telephone is available, yet the recipient must be
in a place that is aware of the ring of the initiator. In many cases,
this is a significant shortcoming.

The telephone is not naturally self-documenting. Conversations
can be recorded, but even then need to be reviewed sequentially.
It is more difficult to review recorded voice documentation than a
paper-based document. The telephone captures the emotion and
imagination of the collaborator, yet only through verbal
communication. Voice inflection can make emotion more obvious
than the paper-based written word. The telephone has no specific

advantage for iterative communications and is a poorly indexed
technology. Teleconferencing has improved the scalability of the
telephone, but its scalability still falls short of ideal. The telephone
lacks the richness to efficiently communicate precision and is
especially weak on visual images. The telephone is hearing
immersive, but ignores the other senses. Yet, it complements the
partial visual immersion of paper well as the number of
occurrences of phone calls made to discuss a paper document
suggests.

2.3 Electronic Mail

The idea of email arose in the early multi-user systems and
research laboratories of the late 1960s. The United States
Department of Defense's Advanced Research Projects Agency had
developed ARPAnet, (which in 1969 became the Internet [3]), and
it was expanding quickly. In the business sector, email easily
suited host-based systems in which large numbers of users were
connected by terminals. Proprietary host email systems such as
IBM’s Professional Office System (PROFS) or DIStributed Office
Support System (DISOSS) and Digital Equipment Corporation's
(DEC) All-In-1 or VMSmail were popular tools of the time.[2]
Email is a widely used communications and collaboration tool
because it enables people or mail-enabled applications to
exchange multimedia information, workflow, and electronic data
interchange transactions.

Evaluation of electronic mail. Overall, electronic mail combines
many of the benefits of paper and the telephone. First and
foremost, email is a more efficient technology than paper. Email
can be organized more easily than paper or telephone
correspondence as it is in an electronic format that the computer
can use to organize. Still, email does not naturally keep
information any timelier than paper or the telephone. Computer
based services can communicate information changes by
maintaining mailing lists and each recipient can permit the latest
incoming message to replace the last transmission. Paper based
subscriptions provide the same service but require the recipient to
replace the last transmission manually.

Availability of email has been problematic to this point, but there
is no real reason it shouldn’t be as available as the telephone.
Access is currently more difficult than the telephone, but again
there is no technical reason for its inferiority. Email is
exceptionally time independent and gets closer to complete place
independence daily. Email is as emotional and imaginative as
paper as they both rely on the written word, yet typically, email is
less brainstorming enabling than paper when anonymous
messaging is not available. Still, email lacks the voice emotion
capabilities of the telephone. Email can be set up to be more
iterative and indexing than paper or the telephone. Again, logical
computer processes can be used to maintain iterations and a
randomly accessible index over time. Email is very scalable
compared to the telephone or paper as it takes advantage of the
client/server benefits of computer networking technologies. Email
is no more precise than paper or the telephone and no more
immersive than paper.

2.4 Chat

Jarkko Oikarinen wrote the original Inter-Relay Chat (IRC)
program at the University of Oulu, Finland, in 1988 [4]. He
designed IRC as a client/server program. IRC differs significantly
from previous synchronous communication programs.
Fundamental to IRC is the concept of a channel. Original chat

programs had no need of channels since only two people could
communicate at one time, typing directly to each other's screen.
Other chat systems have been developed with similar features to
IRC. Basically, chat is the text based equivalent of the telephone.
Chat technology is similar to a teleconference in that, unlike with
paper and email, the telephone and chat allow for more interactive
collaborations as any collaborator can start communicating
information at any time during their use of the technology.

Evaluation of chat. Chat is very efficient as it passes every written
thought to each subscriber to the channel immediately. Chat is
extremely unorganized and often described as chaos. The
collaborators that use chat can set up some protocol ahead of time,
but chat does effectively nothing to enforce it. Chat’s timeliness
rating is similar to the telephone’s. Availability and access are
similar to email. Chat is more time dependent than email because
it is real-time, yet no more place dependent. Chat tends to be more
emotional than email not through its form, but because it is so
immediate and emotion is raw, often overcoming typical
inhibitions of the communicator. Chat’s biggest benefit over other
technologies is in its brainstorming potential because anonymity is
assured and new idea discussion can be quick and rapid.

Chat could be as iterative and indexed as email, but the supporting
computer processes have not been developed nor applied to chat
to date. Chat is as scalable as email because of its client/server
nature. Yet the more concurrent users, the more chaos creeps in to
the collaboration process. Chat is no more precise than email, yet
tends to be more immersive than email because so much is
happening so quickly and that intensity of communications
requires more attention.

2.5 Video Conferencing

Video conferencing is a collaborative technology where multiple
cameras and microphones provide simultaneous voice and images
of collaborators such that the collaborators can see the images of
all other cameras except the one focused on them. All
collaborators hear all voice transmissions. Video conferencing is
used often used to replace travel when collaborators feel the need
to see one another while collaborating.
Evaluation of video conferencing. Video conferencing is similar
to chat in many respects, but tends to be more organized as
collaborators gain access to more communication feedback from
other collaborators. Video conferencing provides voice and
gesture feedback as collaborators can see and hear one another.
The enhanced feedback comes at tremendous expense as
simultaneous voice and video require significant bandwidth while
chat bandwidth requirements are trivial. Video conferencing tends
to limit the intensity of the emotional response from each
collaborator and severely limits the brainstorming anonymity of
chat. Video conferencing is also more difficult to scale to many
different locations. Video conferencing can provide a more
precise representation of 3D information as the camera can move
around within a 3D space. Video conferencing provides partial
immersion of more senses than chat, but the experience seems less
immersive than an intense chat session. Video conferencing is
currently more place dependent than chat but, with infinite
bandwidth, need not be so. Similar to email or chat, the computer
can be used to organize and index collaborative information.
Although algorithmically more difficult to index video than text,
the Motion Picture Experts Group’s latest video standard being
researched (MPEG4) is attempting to index video by the
significant events that appear on camera.

2.6 Multi User Dimensions (MUDs) and Object
Oriented MUDS (MOOs)

MUD1 was the first proper, workable multi-user adventure game
using text-based communications over a computer terminal. Roy
Trubshaw and Richard Bartle at Essex University in England
wrote MUD1 on a DECsystem-10 mainframe. Trubshaw began in
autumn 1979, and Bartle took over in summer 1980. Initially, the
game was playable only by students at the university and guests
using the university’s system. After a year or so, however,
external players began to direct-dial from home using modems,
and the game's popularity grew. [6] MUDS and MOOS are still
very popular for social and game-based collaboration.

Evaluation of MUDS. MUDS and MOOS can be considered chat
with a context. Usually, a MUD collaborator has a sense of
presence in a 3D environment that helps focus communications on
his or her surroundings. The MUD is housed on one or more
computers that contain the details of the world as well as act as
the chat server. Because of the context provided by the world
database, communications tend to be more organized than with
chat. The communication is just as efficient as the telephone.
Since the computer makes changes to the database over time,
MUD based information is more timely than the telephone.
MUDS tend to be less available or accessible than email or the
telephone because concurrent use is usually restricted in order to
keep up the quality of service.

MUDs are as time and place independent as chat and can be self-
documenting if some logging service is provided on the world
computer. MUD collaboration can be as emotional as chat. In fact,
quite an elaborate subculture has arisen in the MUD community
such that text based norms have been promulgated that creatively
attempt to make up for the lack of voice and gesture feedback of
keyboard-based transmissions.[7] MUDs are an extremely
imaginative collaboration technology as collaborators are often
allowed to add rich 3D based text additions to the world database.
Collaborators must use their imagination to see the world they are
investigating. Brainstorming is limited by the fact that the MUD
usually already has its context determined by its choreographer,
but a collaborator is provided the benefit of anonymity.

MUD scalability is not limited by technical considerations, but by
the sense of community. A larger, faster computer or bank of
computers can always be used to house the MUD, yet more
collaborators tends to disturb the sense of peace of the MUD
experience. MUDs provide a collaborator a means for specifying a
third dimension, but only as precisely as words can detail it. MUD
participation is extremely immersive as the mind is occupied by
creating a picture of the world from a text-based description. No
aural or haptic immersion is involved.

2.7 Networked Groupware

Version 1.0 of Lotus Notes was developed from 1984 to 1989
through the design and programming efforts of Ray Ozzie, Len
Kawell, Tim Halvorsen, and Steve Beckhardt, the first three of
which had developed a strong vision of groupware from having
worked with the Plato system at the University of Illinois in the
mid-1970s. At the Computer-Based Education Research Lab
there, an electronic newsgroup-like computer program called
gnotes, run by users in remote places sitting at a Plato terminal,
allowed users to share group messages. Although Plato terminals

were attached to a mainframe, the environment had the feel of
today’s PC networks. [6]

Groupware such as Lotus Notes organizes collaborators’ off-line
discussions, creating discussion threads, multiple indexing, and
time stamping. Groupware databases are becoming more
graphical as images are easily inserted into the body of the text.
There are common sense arguments supporting off-line
collaboration over face to face meetings such as the following:

• Participation independent of location to save travel time
and conflicts

• More time to think about new information before
responding thereby better response quality

• Consideration of most relevant information first in order
to think top-down

• Ability to skip details of issues not relevant to a
participant in order to save time and resources

• Participation when feeling more participative and
energetic

• Revision of thoughts before presenting them in order to
avoid miscommunication

Evaluation of groupware. Groupware is as efficient as email, yet
significantly more organized as a typical groupware database
contains more than just a few dynamic indices to the database’s
documents. These views as they are called are easily created by
available sorts and filter and provide a sophisticated search
capability. Timeliness is improved over other technologies as only
one copy of a document exists in the database at any time and is
updated to remain current. Groupware, like email, continues to
become more available and accessible. Both can be considered as
100%. Groupware is both time and place independent and does a
great job of self-documenting the collaborative process. In fact, a
selling point of groupware is its benefit of tracking historical
collaboration for later use in confirming details or revisiting a
decision point that was influential in success or failure. The
documentation process then helps others learn how to collaborate.

Groupware is similar to email in its emotional, imaginative, and
brainstorm enabling ability. Because of its organization ability,
iterative collaboration is better served by groupware than all other
collaboration enabling technologies. Groupware is scalable
through its client/server architecture. Groupware allows for a
precise representation of facts through text and images, but is not
yet considered a 3D medium. Groupware is as immersive as
paper-based information sources.

2.8 Networked Video Games

Video games were born when the first computer display was used
to represent information in a graphical format and a user
interactively moved the image with a goal in mind. Video game
evolution has been constant since that point. Video games evolved
rapidly in the golden years of video games at the beginning of the
1980s. In 1980, the video game Defender became the first video
game with a virtual world where activity was happening outside
of the physical view of the player. Also in 1980, Battlezone

became the first truly interactive 3D environment used in a video
game and Bezerk added the first spoken vocabulary of 30 words.
Finally, in 1981, the video game Warlords became the first
collaborative game where cooperation with other players actually
helped a player gain a higher score [11].

Since then, video games have been networked over long distances
and the graphical displays have continued to become more
impressive. Video game technology is very efficient, organized,
and timely as the computer controls all three aspects. Video
games are as available and accessible as other network computing
technologies, yet often require higher bandwidth resources than
email or chat. Since the game typically changes often and
instantaneously, there is a high time dependence although the
place independence improves at the rate of new network
bandwidth rollout. Video games are not usually self-documenting,
but can become so with added overhead. Video game users can
demonstrate emotion through the characters they represent. Their
playing piece typically demonstrates human-like, non-verbal
communication. Video games can capture the imagination of the
player, yet with such exact graphical output, usually are very
literal. Imagination is more associated with immersion in the
game-playing environment where the player imagines being the
playing piece in the scene. Video games are usually not
brainstorm enabling. Video games can be built to be iterative
toward better understanding and can be indexed along the way
such that a saved game condition can be loaded and revisited.
Video games can be scalable through a client/server architecture.
A precise 3D representation of data can be represented using
video game technology and video games can become an
immersive experience of all the senses.

Video games will continue to push collaborative technologies
through their money making potential. Today’s networked video
games like Doom and Quake make millions for their creators as
children and adults are willing to pay significantly for their
entertainment.

2.9 Distributed Interactive Simulation (DIS)

According to the DIS Steering Committee:

“The primary mission of DIS is to define an infrastructure
for linking simulations of various types at multiple locations
to create realistic, complex, virtual "worlds" for the
simulation of highly interactive activities. This
infrastructure brings together systems built for separate
purposes, technologies from different eras, products from
various vendors, and platforms from various services and
permits them to interoperate. DIS exercises are intended to
support a mixture of virtual entities (human-in-the-loop
simulators), live entities (operational platforms and test and
evaluation systems), and constructive entities (war games
and other automated simulations) [8].”

In many regards, DIS can be considered a video game technology.
DIS is considered a significant standard for potentially networking
hundreds of thousands of users together in a virtual world based
simulation. DIS architecture is different than a typical network
game server. The first successful DIS prototype started
development in 1983 and was unveiled in 1989.

Evaluation of DIS. Compared to video games, DIS is different on
the emotional scale as a collaborator never controls the human

form. Non-verbal communication is limited. Collaboration is
through voice discussions of strategic choices of action. DIS is
more scalable by nature of its design. Since the DIS standard is
evolving toward improvement on all the collaboration scales, the
interest lies mainly in what it will become.

2.10 Greenspace

Greenspace is a 3D virtual environment platform developed by
the Human Interface Technology Laboratory at The University of
Washington. Greenspace technology is based on multicast,
collaborative, object-oriented classes driving 3D stereo visual
display, spatial sound, speech recognition and synthesis, position
tracking, touch and gesture input with force feedback. [10]
Although all design goals have yet to be met, the technology
encompasses the ultimate in fully immersed virtual collaboration.
The key to Greenspace is the position tracking of the body of a
collaborator in order to represent the collaborator’s actions in the
virtual world. The first phase of Greenspace was demonstrated in
November of 1993 while the second phase was demonstrated in
1995.

Evaluation of Greenspace. Since the collaborator actually
becomes a virtual human, non-verbal communication is enhanced
over the typical video game. Multicasting permits Greenspace to
be more scalable than today’s video games. All other aspects of
Greenspace rank similarly to the video game collaboration
evaluation.

2.11 Avatar based Multi-user Worlds

True 3D multi-user worlds based on VRML became publicly
available in 1996 from many different sources including blaxxun
interactive, Intel Corporation, and Sony Corporation. Avatar
based multi-user worlds are a combination of chat and the
Greenspace ideal. Built with lower bandwidth requirements,
multi-user world technology relies on many of the aspects of chat
and MUDs that have made them successful as collaborative tools.
Multi-user worlds allow for text based communications and
unique identification of the user in the world through an avatar.
Behaviors need not be human, yet the avatars provide some form
of non-verbal communication that can be interpreted by a human.
Like MUDs, they can be quite social in nature. Voice based chat
is rapidly being incorporated into multi-user virtual worlds.

Evaluation of multi-user worlds. Multi-user worlds are as efficient
as chat, and are as organized and timely, but with a different
purpose. Multi-user worlds are organized around a very visible
three-dimensional information space. Any changes to the three
dimensional state of the shared world are updated in a timely
manner. Availability and accessibility are similar to MUDs as are
the time and place independence ratings. Multi-user worlds do not
have any explicit self-documenting feature, but the self-
documenting ability can be built within the computer process with
overhead. The inclusion of an avatar allows the collaboration to
be more emotional than with MUD technology, but significant
work is still needed to make useful avatar behaviors a reality.
Multi-user worlds are more literal than MUDs that can be
interpreted as being less imaginative. Yet, for communicating
truly unique 3D images, multi-user worlds can capture the
imagination of the collaborator. The brainstorming ability of
multi-user worlds is dependent on the tools available within the
world.

Multi-user worlds can provide iterative collaboration of 3D design
in pieces, or all of the world can be replaced with a new geometry
to communicate a better idea or understanding. Since multi-user
worlds are Web-enabled, objects can be brought in from any Web
server to aid communication. Multi-user worlds are not as
immersive as Greenspace, but can become so as the technology
develops.

2.12 Conclusion

Technology has been enabling collaboration for centuries now. As
time passes, the best features in one collaboration enabling
technology are appearing in the others. For example, the benefit of
place independence provided by email is being extended to
telephones through cellular technologies. Or, as another example,
avatars are being added to networked computer programs to
enable non-verbal communications in a virtual world. Some of the
features of collaborative tools are actually in competition with
each other. For example, MUD users mention how they appreciate
the personal interpretation they are afforded by being provided a
text only communication medium. Their interpretation is personal
because the pictures they create are solely inside of their head. As
we move to Greenspace environments, the picture is very literal.
A literal picture has some powerful benefits, but the trade-off is
always a loss of personal interpretation, something our society
often defends as personal freedom.

In collaborative technologies of today, convergence is the key. A
collaborative environment taking advantage of a multi-media
enabled computer can pick and choose the best aspects of each
technology reviewed in this historical perspective. As computer
bandwidth and processing speeds improve, collaborators will
expect all of the best collaboration enabling aspects of technology
in the same collaboration tool.data model and data acquisition.

3 3D COLLABORATION ON THE INTERNET
3D, multi-user collaboration on the Internet is currently enabled
through five component technologies: 3D world modeling
technology, communications technology, Web browser
technology, server technology, and client/server connection
technology. Each plays its part in providing the multi-user
experience to each collaborator. The world model defines which
visual objects are part of the collaboration and defines each
object’s geometry, appearance, location, orientation, and scale.
Communication technology defines how collaborators
communicate: via text, voice, or email while participating in a
multi-user world. Browser technology defines how each
collaborator interacts with the world model and how the other
communications technologies are integrated with the world model
interaction. Server technology coordinates the collaboration to
make the collaboration process sensible to each collaborator.
Client/server communications technology enables the browser to
communicate with the server(s). This chapter provides a
component-by-component review of the current state of 3D world
based collaboration over the Internet.

3.1 The World Model

An author typically uses a 3D modeling tool to create the world
model. The model is created visually using a computer program
with a special graphical user interface that makes it easy to point
and click on points in 3D space to insert objects and define their
geometry appearance, location, orientation, and scale. VRML
models can be created quite effectively using the 3D Studio Max
modeling package from Kinetix or the Alias modeling package

from Alias|wavefront. Both these packages use four simultaneous
views to model objects: top view, front view, side view, and
perspective view. Figure 3.1 shows an example of a world-
modeling package. The state of the art today in virtual world
modeling allows world model developers to attach object
behaviors to the objects being modeled. Modeling tools are used
to create each collaborator’s personal representation, called an
avatar, which enables non-verbal communications within the
multi-user world.

 Figure 3.1 The Alias’ 3D Modeling Interface

Once the model is created, a world model must be delivered to
each participant in order that each collaborator has access to the
same images on his or her monitor while collaborating. The
Internet has improved world model delivery significantly as a
collaborator today only needs access to the Internet in order to
gain access to the latest world model. VRML is a standard that
defines a world model and stores it in a simple ASCII or UTF8
text-based file[12]. VRML files can be delivered using http: Web
server delivery strategies. Because of the World Wide Web craze
of the early 1990s, Web servers have become optimized for
delivery of HyperText Markup Language (HTML) documents
over the Internet. HTML documents are simple text-based
documents that define how a Web page is viewed by a Web user
in a Web browser [13]. HTML documents can obtain components
of a Web page from other Web servers, allowing efficient use and
reuse of text and graphical information. Within the VRML
standard, object geometry, appearance, location, orientation, and
scale are defined for each object in the virtual world. VRML then
puts the objects together to make a 3D scene. VRML uses the
same Web servers that HTML documents have used so
successfully. No additional enhancements are needed to deliver
3D models anywhere on the Web. And, VRML has the same
facility for obtaining world components from anywhere on the
Web and including them in the current 3D world that HTML has
with text and 2D graphics.

VRML objects can also be stored on and loaded from a local hard
drive or CD-ROM drive. Other shared world model providers use
other modeling technologies and deliver the content locally before
a collaborator begins to use the technology. Video game
technologies have traditionally required local storage of the game
world before a player connects to a shared experience. The
technology is downloaded using the Internet or is purchased in a
physical store in diskette or CD-ROM format. VRML has been

designed specifically for Web server delivery that is more
efficient for rapidly changing world content. The collaborator
always accesses the latest world model because she obtains it
from a Web server that only houses the latest world. Web server
delivery continues to evolve and it seems sure that other
technologies will provide on-line, server-based 3D world model
delivery similar to VRML.

The world model author develops the model while considering its
final file size and its complexity. The file size is considered
relative to expected storage capacity and available Random
Access Memory (RAM) of a user’s computer as well as estimated
download times for Internet accessed files. The world complexity
is considered relative to the 3D multi-user client’s capability to
manage the complexity within a reasonable frame loop explained
in the Browser section of this chapter..

3.2 Communications

As seen in Chapter 2, collaborators have been using different
technologies to enable communications during the collaborative
process. These communications technologies are all becoming
available in 3D shared multi-user worlds. As to their coordination
with the 3D world itself, many voice, text, or email
implementations are best considered as separate, parallel
computing processes. Telephony, voice-enabled or text-based
chat, and email can be used in separate windows or frames in
order for collaborators to discuss the 3D world they are sharing.
Also, collaborators can choose to use separate tools and share
information through a separate communications server that does
not rely on any coordination with the shared world.

There is some benefit to integrating the communications within
the 3D world. If an avatar modeled as a 3D object represents a
user, others are aware of his location in 3D space. If the chat
environment is aware of the user’s location, it can take that
information into account to modify communication messages. An
obvious example of this is the voice-enabled chat environment
provided in On-Live! Technologies Inc.’s virtual world
technology. In that environment, the volume of a collaborator’s
voice is dependent on his or her distance from another
collaborator. This set-up is a natural interface that provides easy
one-on-one communications. Two collaborators need only find a
location away from other users and they will only hear each other.
If six users stand in a circle, they all hear each other at the same
time with similar volume.

Even text-based communications can take advantage of the 3D
locations of the collaborators. Distance from others can dictate
which chat channels a user is privy to. A new visitor on the scene
can quickly determine who is available for a chat session based on
their location in 3D space. For example, blaxxun interactive’s
Passport client provides a beam feature that allows one
collaborator to quickly move to a location in the world that is
directly in front of another collaborator identified by name. His or
her avatar is also automatically oriented to face toward the other
collaborator. At that point, it is clear that a one-on-one chat
session is being pursued and the collaborators can negotiate to
establish it. For integrated communications scalability, the
communication process can run on a separate server or as another
process on the same server.

The collaborator communications decision is a difficult one for a
3D multi-user developer. The more communication bits coming

over the Internet to a collaborator, the more bandwidth he or she
needs to be able to manage them in real time. To develop for a
14.4 or 28.8 kbs modem connection, trade-off decisions have to
be made. For example, On-Live! Technologies Inc.’s Traveler
viewer does not provide a body for a collaborator’s avatar since
the animation of the mouth bits and voice bits occupy a significant
portion of the bit budget supported on a slow Internet connection
with limited bandwidth.

3.3 The Browser

Most clients used by 3D world collaborators use two separate
applications. A Web browser originally designed for HTML
document presentation provides General Web navigation. 3D
model specific navigation is provided by another application that
communicates with the Web browser through a defined
specification; Netscape Communication Corporation’s plug-in
Application Programming Interface (API) being the most popular.
Almost all popular VRML viewers, for example, connect to the
popular Netscape Communications Corporation’s Navigator and
Microsoft Corporation’s Internet Explorer Web browsers through
the plug-in technology originally provided by Netscape
Communications Corporation. The Web browser communicates
with Web servers to request and send information on the VRML
viewer’s behalf. The VRML viewer then uses the data received to
create the 3D world seen by the user. Yet, stand-alone 3D VRML
viewers do exist and provide refreshing, creative clients. OZ

Interactive Inc.’s OZ Virtual browser is an example of a VRML
browser that handles basic Web navigation without the help of
another application.

The client is responsible for parsing the world model as it is
delivered from a Web server, determining a beginning viewpoint,
rendering the scene based on that viewpoint, and then maintaining
changes that occur based on the user’s interaction with the scene
or server-based messages sent to the client. Incoming bits
represent incoming text or voice communications, avatar location
changes, behaviors in the shared world initiated by any
collaborator’s actions or timers embedded in the world. The local
collaborator’s viewpoint is managed locally within his or her
client. Outgoing bits include changes to the local avatar position,
behaviors activated by the local collaborator, and text or voice
messages sent for communication with other collaborators.

Most of the obvious differences between browsers are a result of
different choices in the look and feel of the user interface. This
chapter will take a look at the basic capabilities of most 3D multi-
user enabled browsers. blaxxun interactive’s Passport [14] (Figure
4.1), On-Live! Technologies Inc.’s Traveler [15] (Figure 4.2),
Sony Corporation’s CyberPassage [16] (Figure 4.3), and OZ
Interactive Inc.’s OZ Virtual [17] (Figure 4.4) are all popular 3D
multi-user world browsers. New versions appear approximately
every month and, as a result, make any description of their
capabilities outdated soon after putting the words on paper. The
following comments are as of February 1997.

All four browsers handle voice and/or text chat simultaneously
while providing a shared world model to each connected user.
Each provides an avatar that can be seen by others as a
representation of each user. All are working to incrementally
incorporate the VRML 2 standard. The VRML 2 standard
provides object behaviors such as change in location, orientation
and scale, change in color and lighting and appearance and
disappearance. The user has control of a navigation mode such as
walk, fly, or examine mode, the ability to turn on or off a default
headlight attached to his or her virtual head, the ability to
bookmark an exact location and orientation in a world, and the
ability to enforce collision with other objects or disable it. The
user moves around in the world using the arrow keys on the
keyboard or by way of mouse movement within the world itself or
relative to a control panel provided within the interface.

These clients provide each collaborator the ability to choose their
avatar from a avatar collection. Some allow each avatar child
object (such as hat, shirt, shoes, etc.) to be changed or colored
separately, and some allow the user to provide their own avatar
following some guidelines and VRML 1 or 2 design.

The client is carefully engineered such that a certain minimum
frame rate is maintained if the minimum recommended CPU,
RAM, video board, and Internet connectivity technologies are
used by a collaborator. The frame rate, or number of times per
second the world is re-rendered to the screen, is a critical success
factor for most users. Internally, the client makes constant
tradeoffs between available changes provided by all incoming
bits, user movements, and mouse clicks. The higher the frame
rate, the better the experience. In an ideal situation, all state
changes are easily handled by the client frame loop with time left
over. Then, the client can increase the frame rate above the
minimum rate used internally, perform some other function, or
just wait for the next frame loop to begin. When all state changes
can’t be handled within the minimum frame rate loop, the client
can throw out some of the changes or queue them for later

processing. Each client developer creatively programs these trade-
off decisions which then become more important as the world
complexity increases, number of collaborators increase, and active
behaviors increase.

3.4 The Server

In its most basic form, the server simply connects users together
in order to send changes from one collaborator’s world model to
the other collaborator’s world models. A collaborator connects to
a server over the Internet, is delivered a current model of the
world from the server or another collaborator, and then interacts
with the world by sending updates of his or her actions and
receiving updates from others’ actions.

In its most complicated form, the server can be transforming the
world itself and communicating its changes along with changes
from other collaborators. The server can contain logic that
monitors each collaborator’s actions and regulates it in any way.
For example, blaxxun interactive’s CyberHub server can mute a
collaborator on behalf of another collaborator’s request. Today,
most of the server capabilities are tied to a specific client
technology. Connecting to a server without a specific client
technology makes little sense.

It is possible to architect a 3D shared world without a server if
each client knows how to communicate with all other peers. Such
server-less multi-user worlds, called distributed worlds, usually
are enabled with a broadcast or multicast communications
environment. Greenspace is an example of such a multi-user
world delivery environment [18]. Greenspace clients are
connected over a dedicated network such that changes within one
collaborator’s world are communicated only to certain peers.
Since the Internet IP multicast communications protocol is still in
its infancy and Internet broadcasting is a tremendous waste of
messaging, centralized servers have been used extensively to both
deliver 3D virtual worlds and maintain communications between
users for Internet implementations.

3.5 Client/Server Communications

In a client/server architecture, each function point is strategically
placed at the server or on the client based on the ability and
capacity of each technology. Technologists take advantage of
client/server architecture to split the development effort among
mutually-exclusive programming efforts. Client specialists work
to make the client more user friendly and capable. Server
specialists work to make the server more secure, fast, and capable.
As long as the client/server communications piece is defined
ahead of time, each can work on independent timelines because
the latest server will work with the latest client and vice versa.
Client/server development strategies are seen everywhere Internet
enabled multi-user worlds are being created.

Sony Corporation, Silicon Graphics, Inc., Chaco, Intel
Corporation, blaxxun interactive, and Netscape Communications
Corporation all focus on either a multi-user client or server or
both. The clients continue to improve to add new features and
become more efficient. The servers continue to become more
secure, fast and functional. And, often, the clients are upgraded
monthly while server releases appear every six months. The most
troubling constant is the latency brought on by an Internet
connection that requires developers to respect a certain time lag
between a server sending bits and a client receiving them.

The design of the client/server communications piece is critical to
the technology’s success. The VRML community continues to
extend VRML to handle client/server communications. Yet,

VRML viewer developers are creating client application
programming interfaces (APIs) that let the browser communicate
with a server written in any programming language. Both
approaches show much promise for dynamic multi-user virtual
world development. The next two sections contrast the two
approaches to client/server communications.

3.6 Extending the VRML standard

The Living Worlds standard extends the VRML 2 standard
through the PROTO and EXTERNPROTO node keywords in
order to add multi-user capabilities to a VRML 2 scene [20]. The
VRML 2 PROTO node allows an author to encapsulate all
characteristics and behaviors of a VRML 2 object and make that
prototype available to all other VRML scenes by way of the Web.
Another author can use the same PROTO node in his or her scene
by referring to it in an EXTERNPROTO node. The
EXTERNPROTO node includes a field that points to the original
PROTO node on the Web. The Living Worlds standard prototypes
new nodes necessary for multi-user communication and object
shared behaviors and makes them a standard interface for multi-
user server developers to develop server software that is able to
communicate with the multi-user worlds loaded in each visitor’s
Web browser.

Within the Living Worlds architecture, VRML 2 authors can use a
prototype node called Zone to include VRML objects in a multi-
user area. The Zone node is a grouping node that tells the world
server where multi-user behavior is to be enabled. VRML objects
can be added and removed from the Zone nodes on the fly using
ROUTE statements that are an integral part of the VRML 2
standard. The most interesting nodes to add to the Zone group are
SharedObject nodes because a SharedObject demonstrates its
behaviors to everyone within view of the object. A good example
of a SharedObject is a pair of dice that can be rolled in a multi-
user game. Those dice would be added to a Zone that contained
all the game pieces, game board, and game table. The game table
would be a simple VRML object with no shared behaviors. Any
object that is a child of a SharedObject node can at best only
demonstrate behaviors to the local collaborator that initiates them
unless a local timer is provided to each collaborator during initial
world acquisition. These local timers can enact behaviors in each
collaborator’s world without the server.

A SharedObject can demonstrate the standard behaviors defined
in VRML 2. If a multi-user server developer wants to create new
technologies that can be enabled in a Zone, the Living Worlds
standard provides a PrivateZone node that can contain a
MuTechZone node and many PrivateSharedObjects nodes, each
which can contain a MuTechSharedObject node. The word
MuTech is short for a multi-user technician. These four nodes are
all made into prototypes using VRML 2 syntax and as such only
require a standard VRML 2 .wrl file to enable multi-user world
interaction on each client. Unless, of course, the multi-user
technician requires additional executable files to reside at the
client in order to participate in their unique technology. Those
files are downloaded once over the Internet from the server
provider and then accessed by all subsequent VRML 2 scenes.

The Living Worlds standard-setters realize that some of the
features of multi-user technology are better provided by the
browser. Still, until the browser developers make those features
available, an alternative way of providing rich multi-user
experiences is provided through the Living Worlds standard. A
Living Worlds-like methodology could be provided to any
Internet multi-user world syntax where the world model itself
includes the logic to initiate the server routines referenced. Such a

methodology requires the server to be on the more sophisticated
end of possible server types (versus a simple message pass-
through server) until the world generation syntax matures. VRML
is just one standard world syntax that is getting the most publicity
today.

3.7 Client based APIs

An alternative approach to providing multi-user capabilities on the
Internet is to open up a world to other processes that call basic
functions available within the client [21]. Considering this
approach, the VRML 2 standard becomes important only for its
ability to define the world objects’ appearance, geometry,
location, orientation, and scale and the ability to change those
parameters on the fly. Outside programs can determine the
changes to be made and then call the world functions available in
the world viewer client that then make the changes, including
adding new objects and removing existing objects.

The processes that request changes can be written in any
programming language and reside on the client or a server to
which the client is connected. This approach allows much
flexibility for the software developer. The VRML 2 external
interfaces usually work as follows:

1. The programmer creates variables in his or her program(s) that
point to nodes in the VRML 2 scene graph.

2. The programmer uses the variables in her program(s) to
change variable states based on programming logic or event
processing (available events are triggered by timers, mouse clicks,
and proximity to objects).

3. Periodically, the programmer requests the VRML 2 scene
graph to update its state (and render the scene) based on the
changes taking place within his or her program(s).

In this case, each event is communicated to a server and sent to all
connected clients that can see or are otherwise affected by the
event processing. The server is written in an appropriate language
and receives event notifications from a client when a client validly
changes its copy of the world. With this architecture, the server
can be simple or complex as behavior generating processes can be
placed at the server or the client. The server need not even keep its
own version of the world if it is designed using a simple message
pass-through architecture.

3.8 Considerations

The benefit of having a standard such as VRML 2 is that content
authors can create content which is viewable by an audience using
all kinds of different browsers. If the browser is standard
compliant and the author’s work is standard compliant, the
content should work on the browser without ever being
specifically tested by the author on that browser. Many authors
and browser developers have subscribed to the VRML 2 standard
in order to reap these expected benefits.

The Living Worlds standard is an extension of the mentality of the
VRML 2 standard creators. The Living World’s task force is
developing a standard that encompasses how an author can
identify shared behaviors and multi-user ability within the VRML
scene graph file itself. Then, using the standard, the multi-user
server developers can create a standard compliant server and
multi-user functionality will be assured by the world author
without specifically testing the world on each server. In the long
run, if the standard is written well, Living Worlds could easily
obtain the success that VRML 2 is currently enjoying. In fact,

Living Worlds may become the cornerstone for VRML 3. Such a
standard is useful if a united, connected, cyberspace is to be
provided by many different interests.

In the short run though, using an external interface from the
VRML 2 browser to other programs appears to be gaining a
ground swell of interest. The Java programming language is
meeting the needs for other Web based technologies and is being
used for creating object behaviors in a VRML scene [19]. The
Web is such a dynamic and ever-changing medium that
developers are bound to keep pushing the technology through
their own creative client programs and server technologies. An
external interface in the VRML viewer client lets this rapid
development process happen. Multi-user 3D world technology can
improve rapidly because the five component technologies can be
worked on separately by specialists and an improvement in any
one of the world model builder, text/voice communications, Web
browser, server, or client/server communications technologies
improves the whole process.

4 INTERFACE STRATEGIES FOR A 3D COLLABORATIVE WORLD

Computer users have had the benefit of evolving human-computer
interfaces ever since the first command structure was created.
Human beings communicated with the first computers by way of
switches and lights on a control panel. Soon thereafter, a terminal
was attached to the CPU in order to provide a more dynamic
interface. Users then could type characters on a keyboard and see
the characters echoed to the terminal screen. Certain combinations
of characters communicated a user’s request for the computer to
perform a function on the user’s behalf. The results were then
communicated back to the terminal when appropriate. Menus
soon followed that allowed a user to pick a command from a list
of possible choices without having to type the command.

As computer memory became less expensive and new monitor
technologies were developed, computer systems could afford to
express pictures on the monitor screen instead of simple
characters. A pointing device was added to the user’s arsenal of
input devices and he or she used it to more freely select pictures
and text on the screen. Whole new graphical user interfaces
(GUIs) were developed that consisted of popular user controls,
often called widgets. These widgets became integral parts of
computer operating systems.

Because these GUI controls were so universal, the first desktop
Virtual Reality (VR) systems used them for their human-computer
interface. In fact, all the multi-user world clients discussed in
Chapter 3 continue to show significant use of the GUI controls
popular in 2D graphics. There seems to be incredible potential to
invent new graphical interfaces that take advantage of the third
dimension. Many 3D modeling technologies and 3D virtual
worlds provide a third dimension in which interface components
can be designed and implemented. This chapter looks at the
traditional 2D GUIs and discusses possible new interface
strategies for communicating with 3D multi-user worlds.

4.1 2D GUI Interface Controls

In a 2D world, interface components usually occupy a fixed
location on the screen when enabled. This allows for inter-
program consistency and easy remembering for the user. The
evolution of interface components has always been toward easier
use, less physical movement of the pointing device, and simpler
task repeatability. As computer programs have become more
complex with more available options to choose from, the GUI has

become the subject of much conversation. 2D GUIs have been
evolving toward simplification and reduced size. Small size is
important in 3D environments as well in order to allow the user to
see as much of the world as possible.

Initially, GUI controls consisted of check boxes, option button
groups, buttons, text boxes, and list boxes. These objects are the
cornerstones for human-computer dialogs in a windowed
operating system. A GUI programmer bundled the controls into
different pop-up windows that appeared to respond to the user’s
actions. These same 2D GUI controls continue to be used heavily
today in computer programs as well as on HTML-based Web
pages. The HTML specification includes standard input attributes
for check boxes, option buttons, single choice list boxes, multiple
choice list boxes, text boxes, and simple buttons. Many list boxes
take advantage of a drop-down feature where the user only sees
the list of available choices after selecting a drop-down symbol to
the immediate right of the box. Drop-down list boxes save
precious screen real estate.

In an effort to cut down on the need to move the pointing device
extensively, short-cut menus have become popular with the
introduction of the Windows 95 operating system. In Windows 95
software, short-cut menus become available when a user right-
mouse clicks on an object on the screen. The menu includes all
context sensitive choices available based on the current state of
the software in memory. If the choices are extensive, a cascading
menu structure is used to organize the user’s path to the desired
option. Short-cut menus save pointing device movement since the
menu appears where the user clicks instead of requiring
movement to a specific menu or toolbar location. They also
eliminate unnecessary memorization of menu choices and toolbar
icons as all appropriate menu choices appear with the pop-up
menu.

Lately, more and more computer programs and Web pages are
taking advantage of defining multiple areas within the main
application window. Such areas are called frames or panes.
Frames and panes provide independent navigation by the user in
order that multi-purpose application tasks can be better distributed
for user control. Multi-user 3D world clients are a good example
of a multi-purpose application. In a multi-user environment, the
user participates in chat, world navigation, and options selection
simultaneously. With a frame environment, the option selection
decision is always on-screen independent of where the user is in
the 3D world or the current status of her chat sessions. Each frame
can contain the traditional 2D GUI controls to allow the user to
interact with the frame’s activity. Often, frame size is within user
control.

4.2 New Opportunities with 3D

In 3D applications, the user is usually an active participant in the
3D scene and has a specific location and viewpoint in 3D space.
This provides an opportunity for new human-computer controls.
Traditional 2D GUI interfaces place the controls on the computer
screen that is a barrier to the user’s actions. The user can’t move
forward into the screen. With desktop 3D interfaces, the goal
often is to reduce the user’s sense of the computer screen in order
to help immerse the user in the computer program. The user is
afforded the ability to move forward and backward relative to the
screen. Using the popular 2D GUI controls and placing them on a
fixed screen location reduces the user’s sense of immersion in
many cases. In 3D environments, 2D GUI controls which are
fixed in location change size based on the distance of the current
viewpoint from the control. Placing 2D GUI controls in fixed

locations in 3D space limits their availability to a subset of
possible viewpoints. Is there a useful intermediate mode
somewhere between always being on screen and fixation in a 3D
location?

Also, in a 3D interface, the controls themselves can be three
dimensional. Door knobs can open doors, file cabinet drawers can
organize documents, and steering wheels can control vehicles.
These controls are easily recognizable from many viewing angles.
Traditional 2D GUI controls are flat and not easily manipulated
from angles that are not perpendicular to the user’s line of sight.
Besides, traditional 2D controls are not often encountered by a
user in non-computing activities in the real world. They are
constant reminders to the user that they are not immersed in a real
situation but, in fact, are being provided a computer simulated
virtual reality.

Current desktop multi-user 3D world clients are not considerate of
an immersed collaborator. The clients take advantage of the best
known 2D GUI controls and frames. In theory, this provides the
user the best chance of immediately using the software effectively
based on his or her accumulated knowledge of word processors,
spreadsheets, and Web pages. But, if provided the same interface
while immersed in the world with an HMD based VR system, the
user would find the interface distracting. Providing a different
interface for non-desktop users means retraining for the desktop
user who for the first time gains access to VR immersive
technology. There exists an opportunity to create one interface
that works well for both desktop and sight immersed users.

3D environments provide the ability for a user to have virtual
hands and feet that are not necessarily within the field of view at
any time. A 3D interface can take advantage of that fact by
placing sophisticated controls in the hands of the user and then
giving the user the ability to move his or her hands up within view
or down out of view. Perhaps even better is the opportunity to let
a user choose from different input devices that are made available
in the world. The user could choose their input devices and
controls by picking up the objects they want to use. There is no
reason a user could not choose where to put their controls.
Initially, while learning, a user could put their controls (or help
information) in a place where they are always within view, such
as dangling from the front brim of a virtual hat. Then, they could
move those objects to their virtual hands to be brought within
view as necessary.

4.3 Today’s 3D Multi-user World Interface Solutions

As discussed in Chapter 3, the client is usually responsible for
handling world navigation, text or voice communications, and
personal user preferences. Each of these components requires
some interface design. The following section reviews choices
made by the 3D multi-user world clients available today for
download over the Internet.

4.4 World Navigation

A virtual collaborator has six directions available to her when
navigating a virtual world: up, down, forward, back, right, and
left. In many worlds, the up and down directions are not available
since the user is not intended to leave the ground terrain. In many
clients, such as Sony Corporation’s CommunityPlace, blaxxun
interactive’s Passport, OZ Interactive Inc.’s OZ Virtual and
Netscape Communication Corporation’s Live3D, forward,
backward, right and left movement is initiated with the arrow keys
on the user’s keyboard or user’s mouse movement when the user
is in a walk mode. The up arrow or mouse movement away from

the user navigates forward in the world, the down arrow or mouse
movement toward the user navigates backward in the world, the
right arrow or right mouse movement takes the user to the right in
the world, and the left arrow or left mouse movement takes the
user to the left in the world. In SGI’s CosmoPlayer VRML
viewer, these movements are available when the dashboard has
been turned off. The dashboard contains visual navigation
controls that require mouse interaction in order to navigate the
user. The dashboard is a user preference that can be toggled on or
off by selecting the Show Dashboard item on the short-cut menu
that appears when the user right mouse clicks anywhere in the
world.

When navigating with the keyboard, the user is immersed visually
without any artificial cues in the world. When navigating with a
pointing device such as a mouse, the user sees a pointing device
cursor that leads the user in the direction she is traveling. The
mouse does allow more control as the user need not travel in a
pure east, west, north, or south direction, but instead can move at
any angle along the ground plane by moving the mouse in that
direction. Sony Corporation’s CommunityPlace viewer shows a
tail connected to the cursor that defines the user’s current
direction.

Vertical movement while in walk mode varies substantially
between viewers. Live3D and CommunityPlace use the CTRL
key on the keyboard as a request for vertical movement. When the
user holds the CTRL key down, the up and down arrows on the
keyboard and forward and backward mouse movement move the
user vertically instead of forward and back. CommunityPlace also
provides a jump button that takes the user a certain distance above
the ground plane and changes the viewpoint orientation to face the
spot from which the user jumped. OZ Interactive Inc.’s OZ
Virtual viewer requires a user to move off of the ground plane in
order to fly vertically. The user then can move vertically with the
pointing device and keyboard arrows. To enable this intuitive
movement, the world designer must be sure to leave gaps in the
ground design from which the user can get air bound.
CosmoPlayer invokes vertical movement through its dashboard.
The right-most control lets the user move up and down when
selecting it with the pointing device.

As these viewers get more sophisticated, they are expected to
improve on automatic terrain following algorithms while in walk
mode. With terrain following in place, the user uses the keyboard
arrows or pointing device to move forward, back, right, and left
and the viewer follows the ground plane defined as the first
geometry that exists directly beneath the user’s virtual feet. OZ
Interactive Inc.’s OZ Virtual viewer currently does a realistic job
of terrain following when the gravity option is turned on by the
user.

Virtual world clients typically allow the user to change the
navigation mode in order to traverse the world in a different
manner. Netscape Communications Corporation’s Live3D offers
five explicit modes: walk, look, spin, slide, and point. These
modes are available from a simple on-screen menu in the lower
left corner. The user clicks on the menu to select the mode of
navigation she prefers and that mode is active until another is
selected or a world is entered that modifies the mode while
loading in the computer’s memory. The look mode allows the user
to move the viewpoint orientation without moving her location or
changing her current feet plane. Keys and mouse movement are
used to look right, left, up and down. Spin mode allows the user to
spin the world vertically or horizontally, but not around the

forward-back axis. Spinning changes the user’s feet plane to
reflect the change of scenery. Slide mode uses the arrow keys for
movement left, right, up, and down. Point mode allows the user to
click on an object in the distance and allow the viewer to select a
viewpoint that brings the user closer to the object selected. These
five modes allow for great flexibility of navigation for the user.

In CosmoPlayer, navigation modes are changed through the short-
cut menu made available with a right-mouse click anywhere in the
world. Navigation mode changes change the controls available on
the dashboard. OZ Interactive Inc.’s OZ Virtual viewer allows the
navigation mode to be changed from the menu bar that is part of
the window frame. Navigation modes are not as explicit as in
Live3D’s viewer as the user turns on and off different attributes
such as gravity to create the mode desired. CommunityPlace
provides different controls on a picture based control panel. These
controls allow a user to choose actions typical of different modes
such as pointing or sliding without explicitly changing the current
mode.

All the viewers allow the user to enable and disable a default light
in the world. The light, called a headlight or headlamp is a
directional light that emanates from the user’s forehead. Some
viewers disable the default light when the world dictates. In all the
browsers reviewed here, default light choices are made from a
menu. CommunityPlace and OZ Virtual include the default light
option from an available menu bar menu. Live3D and
CosmoPlayer include the option in the short-cut menu provided
the user when he or she right-mouse clicks anywhere in the world.
Live3D additionally shows a headlight option on the navigation
menu seen in the lower left of the screen at all times.

Collision detection defines whether a user can walk through solid
objects when navigating in a virtual world. Collision detection can
be enabled or disabled on the same menu as the headlight choice.
Yet, Live3D does not make the current collision detection
decision explicit on its on-screen menu.

Current navigation speed is typically chosen by the viewer based
on the complexity of the world model. Yet, the user modifies the
speed by her actions. CosmoPlayer provide an explicit menu
choice on its right-mouse click shortcut menu. A user can choose
slow, normal, or fast navigation speed. In the others, speed is
derived by the speed of any pointing device movement and the
length of time a keyboard key is kept depressed. A user
accelerates as a key is held down until some terminal velocity is
reached.

A note of interest is the lack of 3D objects used for navigation
assistance. Only CosmoPlayer uses 3D objects in its interface,
providing 3D objects on its dashboard.

4.5 Integrated Communications

For worlds with voice communications, the communications
interface can be quite simple. Both OZ Interactive Inc.’s OZ
Virtual and OnLive! Technologies Inc.’s Traveler viewers provide
nothing more than volume control and a mute button. Volume is
adjusted through two simple arrow buttons where a click on the
up arrow increases the volume by a fixed amount and a click on
the down arrow decreases the volume by a fixed amount. The user
clicks multiple times to change the volume dramatically. A user
clicks on the mute button if he or she does not want to send or
receive any voice communications. Then, the client has more
resources available to world rendering.

For worlds with text chat communications, the text environment is
controlled by the user through adjustable multi-line text boxes and
a fixed single-line text box. The multi-line text boxes show the
user the chats to which he or she is active. In Intel Corporation’s,
blaxxun interactive’s, OZ Interactive Inc.’s, Circle of Fire Inc.’s,
Worlds Inc.’s, and Sony Corporation’s multi-user clients, the user
is always privy to a global chat and then made privy to any other
chats in which the user gets involved. Each of these chat boxes
can be resized by dragging the chat box border with the mouse.
blaxxun interactive provides an attractive point and click menu
from which a user can jump between chat sessions. The user then
need only make a single multi-line text box big enough for
comfortable reading.

The work by blaxxun interactive provides another
communications vehicle, the business card. Each user can save a
local business card with information about themselves in the real
world. Then, through a menu, the user can request and send
business cards to other users.

In no client that I visited did text chat communications take
advantage of the 3D world for interface presentation. I found the
chat environment to be very natural and intuitive given my
background with text editors and word processors. Only in Circle
of Fire Inc.’s Active World did I encounter the concept of a
homestead where users could put their own pictures and
information in the world. Users could also add a mailbox to their
homestead on which other users click to send email to that
homestead’s creator. A next step would be to add a telephone to
each homestead in order to initiate voice communications (via
telephone or, if active in the world, a voice channel).

4.6 Personal Choices

In all the clients I used for multi-user communications, options are
presented to the user via traditional 2D GUI controls and context
sensitive use of the right mouse button. Controls are provided via
HTML controls within frames or Java based interfaces existing
within an HTML frame. I found no new, innovative uses of 2D
controls and thus found making option choices very intuitive for
anyone skilled in using popular graphical operating systems or
Web browsers. I found much innovation in what world options are
made available, but not in the controls that allow choices to be
chosen.

4.7 Immersion Strategies

For an immersed collaborator, the screen no longer exists. For
now though, Internet connected, multi-user world collaborators
are more often not immersed and the screen is used extensively
with the interface design. Multi-user clients take advantage of a
typical collaborator’s computing experience to provide typical
mouse-based controls. Menus, GUI controls (text boxes, check
boxes, drop down lists, etc.), toolbars, toolboxes, palettes, dialog
boxes, and combination widgets are all used to let the collaborator
interact with a 3D multi-user world. The client developer usually
uses a multi-windowed approach to organize the 3D world
navigation, communications, and personal options selection
interfaces.

Traditional desktop interfaces undoubtedly provide ease of
learning to first time users, but don’t support a natural
environment for an immersed participant. 3D world interface
designers have an opportunity to design with both the immersed
and desktop collaborator in mind. I believe users who immerse
themselves in a 3D world for the first time will have a more
pleasant experience if they can interact with the world in a manner

similar to how they have been interacting through the desktop.
Yet, immersed behaviors need to be natural in order to get a user
to believe they are physically in the world and not in a computer
simulation.

4.8 Discussion

The RSV tool is available for game players and response
coordinators to use to evaluate performance of first responders
during a simulated emergency response game play session.
Evaluation requires an evaluator to develop the metrics by which
an emergency response effort is considered successful. Metrics
vary greatly by the different constituents in a community. Some
organizations in a community have significant investment in
physical assets. Some organizations, like a museum, may have
fewer assets but the assets may be of priceless value due to age or
significance to human culture. Most constituents agree on the
priority of saving human life, but don’t agree on the relative
priority of saving pets or livestock. Where does the cost of
gasoline used to transport responders and resources fall within a
scoring metric?

The RSR tool allows a scenario developer to determine a scoring
algorithm and we show the team score at all times based on this
algorithm at run-time. An analyst can refine the scoring algorithm
by analyzing its impact on performance in order to determine its
effectiveness in generating desired behavior from game players.
Alternatively, an analyst can start with the RSV tool and find an
example of team behavior that appears to be most successful and
then use that example to build a scoring algorithm based on seeing
scenario-appropriate behavior. Ideally, the RSR and RSV tools
can be used in unison to iterate upon a better scoring algorithm
with which a player can play with software-based agents and get a
sense of how well he or she is doing.

We build the RSV tool to support one basic metric of insight
generation – the more insights that are generated from interacting
with the RSV, the better. Although this is a simple metric, it is
consistent with goals of the visual analytics community in general.
The RSV should allow anyone to get a deeper sense of how an
emergency response effort performed just by interacting with
simple widgets that accumulate value in their coordination in
groups.

Based on observing users use the RSV after having gained
familiarity with the RSR through repetitive use, we hypothesize
that a single scoring algorithm is not sufficient for building an
optimal perspective on an emergency response effort to any
scenario. Instead, a visual tool like the RSV tool lets an analyst
discuss a response team’s performance with changing metrics
associated with changes in the nature of the unfolding scenario
being analyzed.

5 MY COLLABORATIVE WORLD

All of the 3D collaborative, Internet based worlds that I visited
and spent time in (OZ Interactive Inc. worlds, Active Worlds from
Circle of Fire Inc., Worlds Inc. worlds, OnLive! Technologies Inc.
worlds, Moondo worlds from Intel Corporation, People Space
worlds from IBM, Circus World from Sony Corporation,
Pointworld and other blaxxun interactive worlds), use a
reasonable architecture of landscapes and buildings for the 3D
world. All presented me with a world where I could quickly orient
myself, put the territory to memory, and walk about to visit
different locations within the world. Through my cyber-journeys,

I came to the conclusion that many people are working on
creating attractive, functional 3D architectures. I was able to talk
to enough trained architects who were studying the architecture of
cyberspace to believe they will continue to build better buildings
in cyberspace as time goes by.

Instead, during my cyber-visits, the lack of interesting things to do
in the worlds disappointed me most often. I could walk around in
a functional and attractive world and communicate with others,
but that was all I could do. The VRML 2 standard specifies how
to include interesting smaller worlds within the confines of a
larger world. I wanted to work on the smaller worlds that could
then be contained within the architecture of any larger VRML 2
world. I would leave the larger architecture for others to design.

5.1 Objectives for My World

After a lot of thought and learning (I designed a Chinese checkers
world, billiard world, and kaleidoscope world, all of which could
be placed on any flat surface in a larger VRML 2 world), I found
my own creative concept that I was interested in implementing. I
decided to build a virtual world that would require and emphasize
collaborative and competitive behavior and provide both as
alternating goals for a participant. The world would be available
for placement on any flat object such as a table or floor. I defined
the following critical success factors for the world:

• Demonstrate collaborative behavior and contrast it with
competitive behavior

• Demonstrate an appropriate use of mixing VRML and
Java technologies over the Internet

• Provide an enjoyable experience to attract prolonged
attendance in the world

• Provide component parts that could be put together by
participants in unexpected ways

• Demonstrate the attributes of a complex system

This chapter provides an overview of my motives behind each
critical success factor and then presents the design high points of
the world.

1. Demonstrate collaborative behavior and contrast it with
competitive behavior.

I understand why people have such a difficult time defining
collaboration. Everyone has a different image in their mind when
they think of the word collaborate. I wanted to create a world that
provided alternating reward structures: first for competitive goal
reaching, second for team work, and third for collaborative goal
reaching. I hoped that the different objectives would make
participants behave differently. Those different behaviors would
be called competitive, teaming and collaborative. By participating,
a participant would be able to experience the three behaviors and,
hopefully, as a result have more insight into all three.

I experimented with ways to create such a reward structure. I
decided to model the goal structure after an organization
attempting to gain market share. In an emerging market, there are
at least three ways to gain absolute market share (the number of
customers) for a producer. The first way to gain market share is
by taking customers away from other organizations (competitive).

A second is by working with another producer to jointly grow
their market share (team). A third way to gain market share is by
promoting the whole industry to grow the absolute size of the
market yet maintain the same relative share (collaborative).

Much has been said and written about the merits of competition in
securing market share for a producer. Less has been documented
about the merits of collaboration. Innovation in the hamburger
industry and car industry can appear to be somewhat collaborative
when each key producer adds new features to the basic product
that drives up the demand for the product as a whole (versus other
foods or forms of transportation). Collaboration can also be more
direct. For example, in a collaborative manner, the organizational
members of an industry can work together to increase the demand
for their product or service. For example, the national dairy
council promotes milk for all producers of milk through their Got
Milk? campaign.

Of all the industries I considered, the oil industry maps more
directly to the structure of my world than others I explored. In the
late 1800s, four large oil conglomerates (called trusts at the time),
dominated oil production in the world (Standard Oil in the US, the
Rothchilds in Europe, the Nobels in Europe, and a group of
Russian producers). Another participant, Royal Dutch, joined the
battle shortly thereafter as the Russian producers began losing
market share. There was much direct competition and joint
ventures between two producers were formed from time to time,
yet the whole oil industry worked together to promote oil over
other forms of energy [22].

For a high-tech product or service, the marketplace may not be
aware of a new product or service. Once they become aware, they
still may not understand why they would be interested. In fact,
even the venture capitalists who are raising money to support the
product or service may not be convinced of its viability. In those
cases, collaboratively building awareness of the product or service
by the producers provides a great return down the road. Taken a
step further, such collaborative gain can include standardizing the
technology in order that it works with other technologies already
available to and owned by the market. VRML is a technology
following that path through the efforts of the VRML Consortium
[23]. The venture capitalists have provided funds for VRML
development with strings attached. If the market is not grown to a
certain level by a certain date, no additional funds will be
forthcoming. So, there is much interest in standardizing VRML by
the technology providers.

My world gets people to think about how to collaborate in the
extreme: with people they neither know nor have ever seen. I
figure such ability to collaborate would be extremely useful if the
Web is to be used effectively for its new, unique ability of
connecting any computer in the world with any other computer at
any time.

So, in my world, a participant competes to reach certain physical
locations in the world before others get there. These goals are
represented by charcoal gray filled circles that lie flat at random
locations on a board. During a competitive round, a participant
attempts to win market share by reaching the goals first. Yet, in
the next round of participation in the world, participants succeed
by working together collaboratively and by attempting to get at
least one participant to each location in the shortest period of time.

If there are enough participants, a third situation can be added
where participants work as teams to confront other teams. If there
are not enough participants, computer simulated participants could
be added to provide competition or collaborative partners. Team
competition is a behavior required by many board or card games
such as bridge. My world appears similar to a game, but abstractly
represents all virtual worlds that attempt to build a community
through each individual’s actions.

2. Demonstrate an appropriate use of mixing VRML and Java
technologies over the Internet

In order for my world to meet the basic environmental constraints
of the technology I wish to use, I needed to create a
communication system that could overcome the latency of the
Internet where reliable service is not guaranteed. I would also
need to implement a solution that kept up a reasonable frame rate.
By keeping my world to a standard implementation of VRML and
the Java External Authoring Interface (EAI), I was assured certain
inefficiencies in local processing within the Web browser. Yet, I
believed it was important for me to use standard VRML in order
that my world could participate as a part of a larger virtual
universe at any time. In fact, I believed that my world could easily
be put into a room of a larger environment such as the virtual 3D
chat environments I comment on in Chapter 3.

I believe that the documented constraints of client/server
applications that use VRML on the Internet are not limiting in
many cases. So, to prove that, I wanted my world to be
completely realized as a VRML world with Java scripting and
Internet message passing using the hypertext transport protocol
(http). In my world, the latency of the Internet would actually be
incorporated into the design. I believe there are many useful
multi-user applications where the response to a participant’s
actions need not immediately take effect. For example, in
simulating market dynamics, a delay is quite realistic. When an
organization puts a market strategy into effect, it may take weeks
or months until the market begins to react. Many games of
thought also do not require immediacy in terms of relaying moves
from a mover to all other participants. To learn the technologies of
VRML, Java scripting, and client/server communications, I
created both a Chinese checkers world and virtual billiards table
that in no way required a rapid response mechanism. Both
Chinese checkers and billiard table worlds implement a turn-
taking protocol that is consistent with their real world protocol.

Instead, the server that connects participants in my world need
only be able to conservatively estimate a latency that is a worst
possible scenario and then add a certain amount of time to it to
find the least acceptable latency for the world. The server then
need only assure participants that they have not chosen a latency
that is shorter than the least acceptable latency. I intended to build
that logic into my world server. Should the minimal set latency
ever be violated, the server would simply stop the simulation until
any latent messages could be delivered.

Of course, each event that needs to be coordinated between
participants must be assured to take place at the exact same frame
of the simulation. My world has an event queue built into its
design to make sure each event is enacted at the same point of the
simulation (though not at the same absolute time). Since all other
actions are encoded within the physics of the world itself, and
since each participant has that code loaded locally within their
Web browser, only the events that are queued could possibly
cause the different worlds to get out of synch.

All messages that get passed between participants in the world
during an active simulation contain a future framestamp (a term I
use to refer to the specific frame number in a simulation in which
a certain state change becomes active). By not enacting a message
until every participant had received it locally (before the agreed
upon worst-case-plus latency), I would assure that the world state
would always be the same for each participant.

3. Provide an enjoyable experience to attract prolonged attendance
in the world

By prolonged attendance, I mean keeping each participant’s
interest during each session as well as an interest in returning to
the world time after time. For me, keeping a participant active in a
current session until the session was over was very important. I
expect participants would be disappointed if they lost the other
participants in the simulation during the experience. Although I
envision someday having an automatic process replace the
expiring participant, I had no doubt that that would be a less
desired state if a sense of community surrounded my world.
Unless, of course, the participant was detrimentally and purposely
disrupting the natural tranquility of the world. In any case, the
basic experience in the world had to be an attractive one.

To keep participants coming back, I figured I would need to
provide a potentially changing experience in order that a
participant was never experiencing the exact same experience
each time. I also believed that I could create a sense of community
where participants would come to reunite with participants they
had enjoyed participating with in the past.

During my readings on complex systems, I realized that I would
only need to provide a few different components in the experience
that changed between visits to make the experience seem
significantly different. I thought about how different two separate
games of chess become, just by altering the first couple of moves.
Participants would be making moves in my world. Yet, I wanted
to go a step further and allow the rules to change between visits.
With changing rules that could be defined and agreed upon by the
participants, I wanted my world to be flexible enough to provide a
wide range of experiences.

As I document in Chapter 6, I intended to test a hypothesis about
prolonging interest in my world. My world would have enough
flexibility that participants could build the world themselves and
change the rules often during their participation. My hypothesis is
that participants will be more interested in a world where they
create the design and choose the rules.

Whether or not my hypothesis is true, I wanted to build a world
that had the flexibility to change often should participants desire
variability. In the extreme, I envisioned participants emailing me
with new design objects, physics, and rules that I could make
available in the world with a quick turnaround. For those who
preferred to participate in a certain fixed configuration, I
envisioned creating a library of successful variables that any
group could agree to use in a particular simulation. In other
words, my world would cater to both types of participants. Given
my world architecture, it would be easy to store and access
successful combinations of design, rules, and events.

4. Provide component parts that could be put together by
participants in unexpected ways

I wanted my world to follow a serendipitous evolution of its own.
I would provide objects and actions for the world and the
participants would work to use them in ways I could not have
anticipated. By providing much power in the hands of each
participant, each participant’s thought process would be reflected
in the experience in the world. Even the component rules would
be able to be added, eliminated, or altered upon participating in
the world.

Since my component parts worked so well with an object oriented
programming style and, since I would be using Java (an object-
oriented programming language) to tie together the actions of the
objects in the world, I figured I could provide individual
encapsulated objects (visual, behavioral, and rules-based) that
could interact well with each other. The physics of each visual
object would be embedded within that object. There would be
little that was pre-determined about how the world played out. My
world would enact the same kind of collaboration among its code
objects that it would be asking from its participants.

Since each participant would make independent decisions about
what to do in the world and each participant would not be able to
see what others were doing until they did it, I expected to find a
strong independent behavior set coming from each participant.

5. Demonstrate the attributes of a complex system

With all the interesting thinking I had done as a result of reading
about complexity and chaos, I wanted participants to get the same
sense of amazement about complexity as well, but not as a
frustration. Hopefully, my world would contain what looked like a
manageable number of variables and a minimal number of
participants in order that a participant would feel quite powerful in
his or her ability to influence the world and others. Yet, by
participating, a participant would soon realize how complex the
environment was because others were independently trying to
effect the outcome of the world at the same time as the
participant.

The lessons from my world would be lessons about life. In many
cases, we are not in control of how things turn out. We are only in
control of our attempt. It can be fun to try even if the results are
not what are expected. A virtual world should be able to be a
place to learn and have fun without the goals needing to dominate
the experience. I want the world learning to be about complex
systems and an individual’s ability to control his or her
environment. Even in a complete and best collaborative effort (if
there is such a thing), a group is not assured of reaching a goal.
Yet the experience of being part of a group can be quite fulfilling.

Computer simulated worlds have a great benefit over physical
worlds in that they can easily be made self-documenting. As part
of the experience of building this world, I hoped to be able to save
certain worlds and their events that best demonstrated emerging
behaviors that were being experienced in the world. I hoped I
could categorize certain people’s behavior and find a way to
illustrate collaborative behavior to people who were struggling to
define it for themselves. A shared world could be experienced by
another group of participants even if it were designed by a
different group. A new group could try to outperform a previous
group with the same world conditions.

5.2 Design Overview

With these goals in mind, I began coding my world. Much has
been discussed about the architecture of virtual worlds in
technical papers and at virtual reality conferences. My world
would not need to address many of the issues of world
architecture as I decided that my world would be a flexible world
that could exist within the confines of a larger virtual world. My
world could exist in a room of a virtual castle, office building, or
shopping mall. Given the structure of VMRL, my world could
easily be put into any other virtual environment.

All the popular 3D multi-user worlds I reviewed in Chapter 3
provide a large, organized world for multiple participants to
explore. Yet, those worlds lack things to do while in the world.
My world is a world that could be placed in any one of those
larger worlds to provide a flexible context in which participants
can share an experience. Although I provide specific objects and
objectives for my world, it is the desire to produce a flexible and

interactive design environment that has driven my work.

 Figure 5.1 A Screen Shot of Marbles World

My world does have a context that is outlined in detail in
Appendix A. A screen shot of my world in action is presented in
Figure 5.1. I provide a quick summary of how my world behaves
here. A participant in my world first clicks on check boxes to
negotiate the rules for the world session with the other
participants. The rules cover how certain objects on the screen
behave, determine values for the overall physics such as a gravity
coefficient and the mass of the marbles, and decide what
constitutes success (including the competitive v. team v.
collaborative decision). Once the server delivers the visual goals
for the next round, participants together design the board on
which their marbles will roll. Participants design the board by
taking turns in dragging and dropping available design objects.
After they design the board, they choose from a palette of
available effects to add to their arsenal for the active simulation
round. Then, the marbles begin to roll and the world comes to life.
Participants click on the board to affect the slant of the board
which dictates the direction the marbles move. Participants also
click on the effects in their arsenal to control their marbles within
the embedded physics of the world. The active simulation

continues until the agreed upon condition for ending is triggered
(for example, all goals have been reached by at least one
participant). Then, the rules setting starts again. The session
continues for a fixed number of rounds.

To code for such a world, I had a lot of architectural decisions to
make. Client/Server architecture provides great flexibility in
placing functionality at either end of a socket connection. I
experimented with placing different functions at both ends. Over
time I settled on an architecture that worked well enough to keep
the frame rate acceptable on each client yet also kept the
participating clients in synch. My client/server architecture
appears as seen in Figure 5.2.

 Figure 5.2 - My Client/Server Architecture

Basically, with the architecture in Figure 5.2, the client is
burdened with most of the processing. The client manages the
geometry of each visual object in the world, drives the behavior of
each object from its embedded physics, provides event handling
routines for each event triggered by the participant, calculates and
presents the animation of all objects that move and collide with
other objects, and maintains a constant speed for each animation
frame loop.

In comparison, the server’s processing load is light. The server
receives messages from clients and passes them through to the
other clients involved in the simulation. The server also
randomizes the placement of any goals for the simulation and
forwards their location to each client. The server keeps its own
timer to make sure participants are responding within any
established time limits. The server enforces any rules established
by the actions of the clients, effectively dropping certain client
messages that go against the established rules. The server also
receives timing reports from each client and changes the
animation frame loop time for clients that are running faster or
slower than the average. The server is responsible for keeping
each client simulation in synch.

5.3 Client

My world is basically a coordinated effort between various
extendible classes that connect to a standard VRML 2 file through
a standard Java External Authoring Interface. I present an
overview of the key Java client classes and their responsibilities in
Table 5.1.

 Table 5.1 Alphabetical List of Project Major Classes

Animator

The Animator class runs the frame loop that drives the
simulation. The Animator class handles messaging between
all other objects in the world by performing update and
collision management given the current state of the Rules
class.

Effects

The Effects class defines special abilities of marbles that
participants can use to direct their marbles during the active
phase of the simulation. For example, the effects class
defines an anti-gravity effect a participant can use to move
her marble against the pull of gravity. The Effects class can
add new effects to itself easily at any time. The current state
of an Effects object determines which effects are made
available to the participants in the world.

MainWindow

The MainWindow class contains a question text box, answer
text box, and 10 checkbox/label pairs that can be used to ask
questions to and accept answers from participants. The
answers from these questions change the state of the Rules
object. The MainWindow class can easily add new questions
to itself at any time. The current state of a MainWindow
object determines which question, if any, is currently being
asked.

Marbles

The Marbles class, inherited from the Applet class, sets up
and maintains the connection between the VRML 2 viewer
and the Java virtual machine. The Marbles class also starts
the Timer, PortToServer, and Animator threads.

Physics

The Physics class defines the behavior of the pieces that can
are used during the active phase (post-design) of the
simulation. For example, the physics class contains the
behavioral logic for a pendulum. The Physics class can add
new physics to itself for pieces easily at any time. The
current state of a Physics object determines when and how
objects can move during an active session of the world.

Pieces

The Pieces class defines the 3D geometry of the pieces that
can be used during the design phase of the simulation. For
example, the pieces class contains the geometry for a vertical
barrier. Participants can add one or more vertical barriers to
the world during design. The Pieces class can add new pieces
to itself easily at any time. The current state of a Pieces
object determines which visual objects are made available to
the participants in the world.

PortToServer

The PortToServer class connects a client to the world
connection server and handles incoming messages from the
server. The PortToServer class can easily add new message
handlers at any time. The current state of a PortToServer

object determines the effect incoming messages have on the
world.

Rules

The Rules class contains key attributes that define how the
world behaves. Rules can be changed by participants in the
world. For example, the Rules class defines how the slant
queue loads its slants (randomly, through participant turn
taking, or through participant first come, first serve). The
rules class can quickly be extended at any time to add new
rules to the world. The current state of a Rules object dictates
how the Animation class behaves during a simulation. The
Rules object changes its state based on how participants
answer questions asked by the MainWindow object.

Ticker

The Ticker class controls the speed of the Animation thread
by setting a sleep variable based on feedback from the server.
The animation then sleeps for the appropriate period once per
animation loop.

There are also smaller classes that perform very particular roles
such as the Ball, Obstacle, Goal, Player, Arsenal, EventQueue,
and SlantQueue classes. The Ball and Obstacle classes keep track
of the objects that interact during the active phase of the
simulation. The Goal class keeps track of each goal active in the
simulation. The Player class manages the scoring for each
participant. The Arsenal class manages the effects a participant
has chosen for the next round. The EventQueue class manages
upcoming effects and passes them to the Animator when the time
arrives for an effect to become active. The SlantQueue class
manages the upcoming slant orientations of the world’s board and
passes them to the Animator when the time arrives for a slant to
become active.

5.4 The Server

With my client design falling into place, I figured my world
server, written in Java, would be as simple as possible. I decided
to start with a simple message passing server that would do
nothing more than pass messages from one participant to another.
The server would have no understanding of the messages it passed
and all incoming and outgoing message logic would be contained
at each client. As I worked with my design though, I found it
better that the server be aware of the speed of each participants
simulation, be responsible for creating the physical goal locations
for each simulation, and keep track of which participant was
which marble. Given all possible configurations, my server was
relatively simple. I started with base classes that handled socket
creation and maintenance and added code specific to my world.
Yet, the code I added would be appropriate for many other shared
virtual worlds. In all, the server Java file contains two classes that
together connect all the participants together in a shared 3D world
simulation.

Appendix A contains a primer I created that new users can use to
acclimate themselves to how the world operates. Appendix B
contains my client code as it existed during my pilot test outlined
in the next chapter (Chapter 6). Appendix C contains my server
code as it existed during my pilot test. Appendix D contains my
VRML world.

6 TESTING MY COLLABORATIVE WORLD

Having built my world, I wanted to run a pilot test that would test
marbles world against my stated objectives. The pilot tests would
be somewhat informal, yet give me some experience with running
tests should a more formal experiment become warranted. I would
ask the participants various questions about their interest in the
world, get feedback about the technical aspects of the world itself,
and ask about their desire to return to participate again. At the
same time, I also wanted to obtain data from the participants that
would hopefully support or refute a simple hypothesis. I
considered a few possible pilot test goals such as comparing
performance between anonymous participants and participants
who met each other beforehand or comparing collaborative
behaviors of participants before and after participating in the
world. The architecture of the world, being so easily extended,
opened a long list of feasible pilot tests I could run. The world
could be modified with minimal effort to run many different pilot
tests.

I decided to run a pilot test which would grapple with a question
related to one I had read often in magazine articles about Virtual
Communities: What makes people remain in and return to a Web
site? Many articles propose that people like to visit Web sites
where they feel like they are part of a community. The community
can be as simple as those who drink the same cola, or as life
enhancing as people who are fighting big government against a
perceived wrong. The idea that people come to a virtual place
where they feel comfortable with the other people who are there
parallels a real world phenomenon that keeps people coming back
to their church or university. I wanted to take the comfort idea in a
slightly different direction and consider whether people remain in
and return to Web sites because they have a say in what takes
place at that Web site. Howard Rheingold’s Electronic Minds
Website was an example of a text-based Website where people
visited and drove the conversation themselves. I visited Electronic
Minds and opened a discussion on whether the analogy of an
Information Superhighway is a good one for explaining the Web
to the masses. I certainly was drawn to Electronic Minds because I
had a say in what happened there. I quickly perceived myself as
being a part of a community with the others visiting.

In terms of Internet based 3D environments such as my marbles
world, allowing for audience participation is a newer frontier. I
imagine a sandbox world where a participant can connect via the
Web, bring his or her own visual objects into the world, and share
an experience with others using the objects each participant
brings. Or, I can imagine a gallery world where participants bring
their own works of art into the world and work together to present
them in the most attractive and functional manner. Gallery
world’s gallery could even be built from scratch by a participant
base given appropriate tools. Or, I can imagine a virtual golf
world where participants build a golf course before playing golf.

These three imagined worlds can all be feasibly built using
VRML, an external authoring interface and a Java server. The
worlds I suggest in the last paragraph each have different levels of
participation. A sandbox world could have virtually no pre-set
objective outside of sharing time with others. A gallery world
might be quite a bit more organized. A golf world might follow
very specific rules for playing golf. The questions that beg
research are how much freedom to Web participants want? And

are Web participants more apt to stay in and return to Web sites
where they have control over what takes place in the world?

The first question is very interesting, but I believe depends too
much on individual preference to test with a limited subject group.
The second question is interesting as well, but I think may have
too broad a scope for a simple pilot test to provide meaningful
results. The question I decided to investigate is whether Web
participants perform better in worlds where they design the world
and participate in the rules determination than those Web
participants who just show up, read the rules, and participate in a
pre-built, 3D world.

Since marbles world provides a library of objects, a library of
effects, and a library of rules from which to define what takes
place in the world, there is a opportunity to set up a pilot test
between two groups: one group which together defines the rules,
builds the board, and runs the simulation, and another group
which just runs the simulation the previous group defines.

The hypothesis I offer is that the group that creates the world
through its participants will perform better given the rules they
choose than the group that just follows the rules and design set by
the previous group. I am not sure of the full implications of those
expected results, but I believe they are related to experiments run
on a participant’s sense of immersion in 3D worlds. Those
experiments suggest that virtual participants feel more immersed
in a world when they are interacting with it based on their ideas
and actions. If the hypothesis holds true, Web designers would be
supported in creating Web sites with more flexibility. If the
hypothesis is negated, Web designers may well be justified in
continuing to mass-produce more static Web pages designed to
work well with even the first Web browsers and Web TV.

It seems to me that the Web becomes significantly less important
if Web participants are not craving participation with others.
Broadcast TV can deliver content to the masses effectively. The
Web provides a possible direct connection between any two
computers (or people) in the world. With the Web, there exists an
opportunity to use technology in completely new ways. If people
can use a Web connection to create something new of value,
proliferation of the Web may be quite a wise investment. Since
my hope through this project has been to become effective at
using a technology that provides new and useful ways of
collaborating electronically, this pilot test will also provide some
initial feedback as to whether people would use the technology
given the chance.

As a last paragraph before outlining my pilot test, I want to
mention how communicating and sharing through a Website could
dramatically change the way certain things happen in society.
Today, many of the products and services consumers purchase in
the marketplace are first introduced through a product
development cycle that very often takes place within the walls of
large corporations. Consumers get the opportunity to provide
feedback to product development personnel through surveys and
focus groups. Although the Web has made it easier for consumers
to provide feedback, flexible Web sites could allow consumers to
design their own products and then take them directly to a product
or service provider for realization. Similarly, many games are
created by game development companies that instead could be
creatively developed and tested within the confines of a flexible
website by independent Web participants.

Product and game development worlds can be built along the
same design philosophies I follow in building marbles world. The
question is whether people would use them given the chance.

6.1 Preparing Marbles World for a Pilot Test

In order to prepare marbles world for the pilot tests I wanted to
run, I decided to remove some of the code that had provided
flexibility. I figured the results would be too hard to analyze if
participants could choose from the full rules set I had created and
tested. How could I compare simulations run in competitive mode
and collaborative mode? I decided to limit the pilot tests to
collaborative mode since I was most interested in collaboration
through the Web anyway. I then decided to use a fixed set of
objects, events and physics to cut down on the learning curve for
participants. By discussing the upcoming tests with fellow
colleagues, I came up with a fixed way to manage the slant queue.
I decided the world would load initially with the first two slants
already determined. I found that the group design activity was
more interesting with the two slants already in the queue. Lastly, I
spent time fixing the server code so that a specific list of questions
would be asked to any group that was determining the rules. I then
was able to focus my code test plan more specifically.

6.2 My Pilot Test Plan

I will find twelve or sixteen subjects who are willing to spend a
couple of hours maximum in front of a computer monitor
participating in a virtual world. Three or four subjects will
participate at a time. For each group, I will give them written
instructions to read and then spend time with them answering all
there questions except questions about group strategy. Each group
will participate in two simulations. The first time around, the
group will collaborate in a world designed by a previous group.
The second time they will choose the rules and physics for the
world, design the world, and then run the simulation in a manner
similar to the first time. All participants will work toward an
objective of reaching a fixed number of goals in as little time as
possible. After each simulation, all participants will answer a
post-simulation questionnaire. I will then look at the differences
between answers from design round participants and non-design
round participants.

All participants will be able to read about the world before they
participate and ask questions about any directions or procedures
they do not completely understand. But, the participants will have
no previous physical practice with the world. I will only require
that participants have average or better mouse skills. My world
will be fixed in collaborative mode in order that a group’s success
will depend on how quickly the participants get at least one
marble (but any marble) to reach all the goals that appear in the
world. The world will keep track of how many frames it takes to
finish the simulation, as it also keeps track of the rules and design.
Should the participants be unable to reach all of the goals within
2000 frames, I will stop the simulation and count the number of
goals they were able to reach.

After their participation, I will ask each participant questions that
rate their experience in the world as to how much they enjoyed the
experience, how well they believe the technology performed, how
likely they would return to the world, and how immersed they felt
in the experience. The simulation will be considered more
successful if participants enjoyed the experience, supported the
technology, felt likely to return, and felt immersed in the
simulation. My quantitative data will report on the performance of

the groups. I will introduce a scoring system to the world that will
score points for getting to goals in the shortest time possible. I
will compare the cumulative scores between the design
simulations and the non-design simulations as a more objective
comparison of the two groups in action.

6.3 The Post-Simulation Questionnaire

The questionnaire I will give to each participant after they
participate appears as follows:

Please answer the following questions on a scale of 1 to 7, 1
meaning you strongly disagrees and 7 meaning you strongly
agree:

1. I enjoyed participating in the simulation.

2. I became immersed in the simulation with little awareness
of other things going on around me.

3. I would like to participate again with the same group of
participants.

4. I would like to participate again with a new group of
participants.

5. I thought the technology worked well.

6. The interface was natural to use.

7. I felt like I was treated as an equal in the simulation.

8. I learned something about collaboration during the
simulation.

9. I had more control of what took place than I anticipated.

10. I would like to have more control of what happens in
simulation.

Please provide written comments related to the following:

11. Please describe your frame of mind when you started the
simulation.

12. Please describe your frame of mind during the
simulation.

13. Please describe your frame of mind right now.

14. Please list any frustrations you experienced while
participating in the simulation.

I ask question 1 because I believe Web visitors must enjoy
participating in a world if they are to become part of its
community for the long-term. To evaluate my world, I must
determine whether participants enjoyed the simulation. I ask
question 2 because I am interested whether my world was
immersive or not. Immersive worlds are more successful than
non-immersive worlds in keeping a community together and
vibrant. I ask questions 3 and 4 since more successful
communities have members who want to return to visit often. I
ask question 5 to differentiate between disinterest from problems
with the technology and the disinterest from the underlying idea

for the community. I believe the technical problems can be easily
overcome. Fundamental idea problems would be more difficult to
overcome. I ask question 6 to grade myself on my interface
design. I ask question 7 to confirm that a server is a fair and just
facilitator of actions. I ask question 8 hopeful that participants will
learn about collaboration during their participation. I believe they
would learn even more if they participated in a competitive mode
as well. I am not providing competitive rounds as part of the pilot
test. I ask questions 9 to get a sense of whether expectations from
reading my instructions coincide with the reality of the simulation.
I ask question 10 to see how participants feel about not having as
much control as many video games provide. I ask questions 11,
12, and 13 to get a sense of how participants’ thoughts change
throughout the pilot test. I ask question 14 to get feedback that
could help me make the simulation better. I believe each question
will provide valid feedback. I now run the pilot test and review
the results in Chapter 7.

7 RESULTS OF TESTING MY COLLABORATIVE WORLD

This chapter reviews my overall thoughts from this Masters
Project, my pilot test data, and considerations for more research.
Through studying VRML 2, the Java External Authoring
Interface, and client/server design, I came to the conclusion that
two extremes of flexibility are possible in 3D virtual worlds. I
could use the available technology to create a virtual chess board
game whereby the server would enforce the official game of chess
rules. Or, I could design a virtual world where nothing happens
until participants bring their own objects into the world and make
something happen. The latter might be a world that is appropriate
for learning a foreign language as each participant adds the
objects to the world that they feel comfortable talking about using
the foreign language under study.

Between the two extremes of world flexibility, there exists a
broad spectrum of possible multi-user world rule sets. I tried to
make my world fall near the center of a flexibility scale. My
world has a fixed context, but much flexibility around that
context. I found participating in such a world quite enjoyable and
more rewarding than some other experiences I had visiting
existing 3D multi-user worlds. Building and participating in such
a world brought me to consider some interesting questions and
conclusions.

7.1 Overall Thoughts

After thinking about VRML, Java, 3D virtual worlds, and
networking for twenty months, I finished the Marbles world
project with some thoughts that I did not entertain when I began
the adventure. The following section documents some of my more
prevalent thoughts.

1.The External Authoring Interface works OK on Pentium class
machines.

When I started building a client/server architecture for sharing
VRML 2 worlds on the Web, I was not sure PC technology had
advanced enough to be an appropriate platform for my world. I
was extremely pleased with the potential that I saw when I placed
my first virtual marble on a flat piece of wood and watched it
move about. That first marble moved quite naturally on my 90
MHz, 16MB RAM PC.

By the time I finished building my world, I realized that I could
share a realistic looking world of 4 moving marbles, 40 fixed
objects, and 5 moving objects, all with their own embedded
physics, over the Internet. For me, that level of performance is
quite satisfactory as a platform to begin building interesting
shared worlds. I do envision some optimizations I could apply to
my code in order to speed things up further. For example, my
collision detection strategy compares the location of each movable
object to the location of every other object without consideration
to any regions on the board. For 4 marbles and 40 objects, my
code makes 160 comparisons per animation loop. Probably, with
some added logic to the collision detection code, I could cut those
comparisons down to 20 or so per animation loop with minimal
added overhead.

2. My world could be placed within any other world.

As I created my world, I kept reminding myself that my world
could be contained inside of any other 3D architecture imaginable.
I continue to be fascinated with the possibility of creating smaller
worlds of interest that cyber-participants can carry around with
them and use with others. VRML 2 is a language with no inherent
unit of measure. If I had the computing power available to me, I
could simulate interactions with objects by starting at the atomic
scale and build right up to the scale of galaxies just by building
each object out of the appropriate virtual atoms. Any VRML
object made available on a Web server can be incorporated into
any other VRML world. A single VRML object created by a
single person and placed in a single VRML 2 file on a Web server
could almost immediately appear in millions of different VRML
worlds if the network passed it around and others made reference
to it in their worlds. The next step is to create objects that can
interact with other objects. It appears to me that Java could add
behavioral logic to virtual objects until VRML finds a way to
standardize the process. Then, smaller objects of interest can
come alive in virtual worlds all around the planet. My world, just
like any other VRML and Java based world, could literally
become an overnight sensation.

3. Lots of Interesting worlds to build with this technology.

As I created my world, I kept thinking of all the other interesting
worlds that I could be creating instead. Almost any existing board
game could be implemented using this technology. But, I am most
interested in worlds that allow participants to design new worlds
or board games and try out different rules to stumble across
successful designs. I believe this technology will allow groups of
geographically dispersed people to design new worlds which no
one individual in the group would have ever imagined on his or
her own. I believe this technology could allow consumers to
visualize new products and gain the support of other consumers
who could then contact manufacturers about making the product.
Spontaneous connectivity of groups that share virtual worlds
without consideration of geographical distance is an affordance of
the Web that has never existed before. It is very possible the most
interesting worlds have not yet been imagined.

4. There is a lot that can be done with latency.

Although I found it not feasible to use this technology to create a
Quake world or Doom world that would keep up with the latest
shoot-em up games, I did find it to be a technology that would
work well with any board game that requires contemplation and
reflection before each action is taken. As long as decisions need

not be made in the sub-second time frame, any simple world that
involves sharing information could be developed with this
technology. 3D chat worlds work fine with the latency of the
Internet, but it is time to reach beyond simple chat worlds.

5. A server is more unbiased than many moderators or facilitators.

As a person who always disliked participating in games where
people cheated and who sometimes disliked how long it took
others to make a move, I found the use of a server as a facilitator
to offer some really great benefits. A server enforces rules reliably
without a chance of personal bias against any player (unless the
bias is programmed in). A server obeys agreed upon time limits.
And, in the extreme, a server can actually take action on behalf of
a participant if need be (an interesting possibility is to finish a
game for a player who leaves the world before the game is
finished). A server can also create teams and connect players in a
fair and unbiased manner without hurting anyone’s feelings.

Outside of game playing, a server can also be programmed to
enforce rules to provide fairness to a group discussion. A server
can make sure each participant gets equal time in group
communications.

6. There is a lot of potential for a Java 3D API.

By the time I finished using the EAI, I realized that most of the
value of my world was provided by the Java instead of the VRML
2. Yet, the VRML 2 viewer provided much of the freedom I
gained from using VRML 2. The VRML 2 viewer provides me
with the ability to explore my world with six degrees of freedom.
I certainly would not have wanted to program that functionality
myself.

Yet, if there were Java classes I could use to easily create the
VRML 2 viewer functionality I liked, I might not want to limit
myself to VRML 2 as a file format for 3D models. I believe the
approach Sun Microsystems, Inc. is taking with designing their
3D API is a valid one. With Sun Microsystems, Inc.’s 3D Java
API, I will be able to load a Java based scene graph with any 3D
file format I wish by using the appropriate loader class. I see
much potential in a working implementation of a Java 3D API.
Although others have been working on Java based APIs for
sharing VRML worlds, Sun Microsystems, Inc. should be able to
leverage their API through their association with other Java
innovations.

7.2 Experiment Results

I ran twelve subjects through two simulations each. Each subject
was placed randomly in a group with two other participants. The
first simulation had a group try to reach goals in a world designed
by another group. The second simulation had participants design
the rules and the world before attempting the same objective in
that world as well. I compare results between the two groups that
interacted with the same world. The first group participated in a
world the second group had designed. The second group
participated in that same world with the advantage that they had
already participated in a world of another group’s design. Table
7.1 shows the simulation scores attained by the participant groups.
The first row in the table presents the number of simulation
frames the group required to finish the simulation when that world
had been designed by a previous group. The second row in the
table presents the number of simulation frames the group that

designed that world required to finish the simulation. The lower
the score the better.

 Table 7.1 Simulation Completion Times

Not surprisingly, in all four cases, the group that had designed the
board completed the simulation faster than the group that had no
influence in its design. On average, the designers completed the
simulation 20% faster than the non-designers. Yet, in all four
cases, the participant groups ran the simulation where they were
not designers first. They ran their own designed world second. By
observing the individuals work, I noticed that they experienced a
significant learning curve and I feel that their better performance
in their designed world could be attributed to the fact that they
were just better at performing in general since it was their second
time around. Two types of learning were taking place during the
simulations: First, technical learning involved understanding the
interface and how the system responded to human interaction.
Second, collaborative learning involved understanding how to
work with others when success relied on that cooperation. I
believe the participants had moved up the learning curve
significantly between the first and second simulations. Yet, I also
believe they still had a lot more to learn after participating in two
simulations.

Figure 7.1 shows the results of the ten objective questions of the
post-participation questionnaires. For each question, the left-most
bar represents the first questionnaire filled out by participants
immediately after playing a collaborative world of another
group’s design. The right-most bar represents the second
questionnaire filled out by participants immediately after playing
a collaborative world of their own design. The y-axis represents
the average selected by participants on a scale of 1 to 7 where 1
means strongly disagree and 7 means strongly agree.

 Figure 7.1 Post-Simulation Questionnaire Results

Perhaps the differences between the two questionnaires are not as
significant as the average response value for each question. I now
discuss each of the ten questions and the responses in detail:

 Question 1: I enjoyed participating in the simulation.

I am pleased to find that the participants generally enjoyed
participating in the simulation. Participants enjoyed participating
when they were involved in the design more than when they used
another group’s design. Of all 24 questionnaires completed, not a
single participant answered on the disagree end of the scale. I
believe their enjoyment would improve even more had they not
experienced some of the technical difficulties I discuss later.

Question 2: I became immersed in the simulation with little
awareness of other things going on around me.

I found the responses on question 2 to vary greatly by individual. I
am pleased with the level of immersion reported by participants,
but am not sure of how they define immersion. I understand why
the participants reported as sense of less immersion in the design
phase. Many participants did not watch the computer screen while
others were taking their turn designing. Instead, participants
looked away during that time. Certainly, I could have shown the
movements of design pieces of other participants while they were
moving pieces about on their monitor. I thought that would be
distracting. I now believe participants would have felt more
immersed if they could follow other participant’s actions. I found
it very curious that most participants were not planning their next
upcoming move more when it was not their turn. I observed
participants who reacted as if they should not do anything unless
it was their turn, including thinking about the task at hand.

Question 3: I would like to participate again with the same group
of participants.

Overall, participants were quite enthusiastic about participating
again. I am pleased with the fact that participants wanted to go
again even when they encountered technical difficulties.
Participants were quite eager to participate with the same group
even though they did not know their fellow participants in many
cases. Participants were more eager to participate again after they
had been involved with designing the world.

Question 4: I would like to participate again with a new group of
participants.

Participants were even more enthusiastic about participating with
a new group of people. I observed that each participant had his or
her own unique strategy that did not necessarily work well with
other strategies within their group. I believe participants wanted to
go again with a new group because they had high hopes the next
group would think more like themselves. Again, participants
wanted to participate even more after being involved with the
design of the world. I also believe that they wanted to go again
because they were learning some things that they needed more
time to figure out completely.

 Question 5: I thought the technology performed well.

Participants did not rate the technology particularly high, but I am
pleased with their responses given the technical problems
encountered. Of all 12 simulations, two had minor problems that
effected results and two had major problems. The other eight
simulations ran well enough that the participants were not aware
of the problems. I believe the major cause of technical problems
was the fact that users used their mice as pointing devices much
more aggressively than I anticipated. The CosmoPlayer browser
obviously runs code whenever the user moves the mouse to track
positioning. When I ran my timing studies, I did not move the
mice so often and was overconfident that the worlds would stay in
synch.

Twice the technology crashed and I had to start the simulations
over. The first time the group had just finished the design of their
board when the Java console returned an Invalid Field exception.
I had not experienced that error in any of my testing. I believe that
crash did not affect their results since I started the simulation
again from that exact point after a five-minute hiatus. The second
crash occurred 680 frames into the active simulation — that crash
was much more frustrating for me. I had the group fill out their
questionnaires at that point in time, but then restarted the active
simulation to get a timing result from the group. The world ran
acceptably the second time. I did not have time to investigate the
reason for the crash. I did notice though that the group of the crash
had the most active mouse habits.

The two simulations with minor problems could also be attributed
to mouse use. In those simulations, frame rates sped up and
slowed down dramatically on the fastest PC with the participant at
that computer feeling a bit frustrated and annoyed. Eventually, the
speed swings settled down in both cases, but not after
significantly affecting the experience for that participant.

 Question 6: The interface was natural to use.

Participants did not rate the interface particularly high, but did a
good job of indicating what would have made them rate it higher.
Although I reviewed the significance of each control with them
before the simulation, many told me they had forgotten which
control was which. I believe they would have rated the interface
better had I included labels for the controls. I felt that labels
would take away from the immersive experience and had decided
not to use them. Others complained about the cues from the slant
queue wishing the slants were updated more often. I now believe I
should update the slant queues as soon as a new slant is chosen by
a user. Instead, I was waiting until the next slant change. By
waiting, users were unable to tell what other participants had
selected during their turn until after they took their own turn. A
participant could not make an informed decision under those
circumstances.

Lastly, participants found the movement of the board to jump at
times. I believe that I could smooth the movement out by
changing some of the VRML code, but I think some of the
jumpiness is from code embedded in the VRML viewer itself. I
need to spend more time investigating my options for smoothing
out the board movement.

 Question 7: I felt like I was treated as an equal in the simulation.

The participants overall strongly agreed that they were treated
equally by the server. I am pleased with this result since I suggest
that a server can make collaborating much more enjoyable in
certain situations since it is a just and fair facilitator of human
communications. I believe the only reason participants were not
unanimous in strongly agreeing with the statement was that during
the rounds with technical difficulties certain participants thought
their computer was misbehaving worse than others. I thought it
interesting that participants perceived the difference without
actually seeing anyone else’s machine. The fact that participants
rated fairness lower during design rounds supports my belief.
Both serious technical problem rounds were design rounds.

Question 8: I learned something about collaboration during the
simulation.

Overall, participants agreed that they learned something about
collaboration by participating in the world. I learned a lot about
collaboration just by watching them try to collaborate and so was
hoping for even higher results. I think they would have learned
more had they kept on working on additional boards and running
additional simulations. Participants learned more about
collaboration when they collaboratively designed the world. I
noticed many individuals who had great strategies not get the
response from others they needed to get their strategy fully
enacted. Other participants realized what could have been done
later on had they cooperated better. As I mentioned earlier, I was
surprised they did not spend more time thinking when it was not
their turn because they could have figured out more during the
design phase.

Question 9: I had more control of what took place than I
anticipated.

The results to question 9 are difficult to analyze. Participant
answers varied greatly on the scale. I was expecting the results to
be much lower than they were since I did not think participants
felt they had much control. Their subjective answers report their
frustrations. Perhaps they did not anticipate having much control
in the first place. Participants found that they had more control
when they controlled the design of the board.

Question 10: I would like to have more control of what happens in
the simulation.

Participants generally wanted more control, but many reported
that they learned more about collaboration by not having a lot of
control. I find it interesting that participants did not rate this
question higher on questionnaire 1 than questionnaire 2 since on
questionnaire 1 many mentioned how they wanted the control
over the design that they got in the second simulation. Perhaps the
control over the design did not make the difference they had
hoped for.

The following is a review of the comments from the four
subjective questions asked on the questionnaire:

Question 11: Please describe your frame of mind when you started
the simulation.

First Questionnaire:

1. A little tired, a little excited
2. Enthusiastic
3. Tired

4. Confused but anticipating
5. Curious
6. Tired from writing papers but otherwise in good spirits
7. I was confused at first because of the numerous operations
available to me
8. Curious
9. The demonstration helped clear some of the cloudiness I had
after reading the introduction so I was much better prepared, but
still a little less on the what to do or the purpose.
10. A little tense and wanting to do well.
11. Open to whatever was going to happen.
12. Interested in whatever would occur.

Second Questionnaire:

1. Looking forward to trying
2. Thought ahead. Was excited about the game.
3. Tired
4. A little tired, a little excited
5. Alert
6. Planning
7. Hopeful about being able to create a good board
8. Anticipation of playing my game
9. Anticipating
10. Curious again
11. I was uncertain about where to place the obstacles at first.
12. Having already done it once, I was more aware of the
consequences/results. So I was more comfortable.

I found the comments before the design simulation to be more
specific to the task at hand than the first simulation. Most
individuals appeared to be open-minded about the upcoming
simulation instead of holding any negative expectations.

Question 12: Please describe your frame of mind during the
simulation.

First Questionnaire

1. Fairly engaged
2. Discovery
3. Tense, trying to remember rules
4. Frustration, anticipation
5. A bit frustrated by the lag, but still having fun
6. More actively engaged in activity because I saw evidence of
my direct manipulation of objects.
7. I became more focused as the game moved along.
8. Adapting to the delayed response
9. The slowness of the computer confused me a bit because the
simulation crawled.
10. Frustrated with the lag and my catching on rather late about
how to plan my movements well.
11. Concentrated on the task at hand trying to set up the next shot
12. Analyzing - trying to find out how best to play and what was
going on

Second Questionnaire:

1. Intense, so much to think about
2. Was trying to find the best ways to reach the goals
3. Busy
4. Patient, a little confused
5. Absorbed
6. Extrapolating

7. Heightened awareness and focus on what was happening
8. Eager to sink the balls to prove our design was good
9. Go get ‘em!
10. Idling to some extent
11. I had a better idea about where I wanted to place the obstacles
as time went along
12. The smoother frame rate made it easier to comprehend what
was happening, but the screen movements were far from
consistent so I was still a little confused.

I found the participants to be quite engaged with the simulation
based on comments about their thoughts during the simulation. I
did not notice any strong differences between the first and second
simulations, as both sets of comments seem to reflect similar
thoughts.

Question 13: Please describe your frame of mind now (after the
simulation).

First Questionnaire:

1. A little tired, a little happy
2. Enthusiastic
3. Relaxed, more alert
4. Ready to go again
5. Interested in constructing my own board
6. Interested in moving on to a game that I design
7. I now realize what was taking place. I now feel more
comfortable.
8. About the same as before
9. Though I was a bit confused, during the simulation I
comprehended
10. Happy - I am on a date
11. Want to do it again
12. Curious about whether we could learn more and do better
next time

Second Questionnaire:

1. Still intense
2. Want to play again, want to be more effective, more goal
oriented
3. Tired but alert
4. A little tired, a little bemused
5. Want to do over
6. Contemplative
7. Cool experiment. Fun. Glad to see what a difference my
choices made.
8. Intrigued about the possibilities of this technology
9. Job well done, at least on my computer
10. Same as during
11. Wish I would have done a better job of placing my obstacles
12. I can see how this simulation can be useful for future
applications. Call me when 4.0 comes out (hey, its a popular
version number).

I found the comments about post-simulation thoughts to be quite
promising as most comments reflect a state of positive reflection
about the simulation. I notice no significant difference between
participant’s thoughts after design simulations and non-design
simulations.

Question 14: Please list any frustrations you experienced while
participating in the simulation.

First Questionnaire:

1. Another participant was yelling.
2. Others choosing too rapidly
3. Had trouble remembering what tools on palette did
4. Too slow, not enough obvious control over things (but I
imagine that is part of the game)
5. Effects seem to be of limited use when the lag time before
their start and the amount of time they last are unknown.
6. Delay in seeing future slopes (couldn’t tell if my team mate
chose the slope or if the computer did). The cues for what was
next came up too slowly so I had to pick a slope based on choices
before last.
7. The effects didn’t work as well as I would have liked. They
did not respond as much as I hoped.
8. Slow
9. Just the slow server
10. See above (frustrated with the lag and my catching on rather
late about how to plan my movements well).
11. None I can think of
12. I wasn’t really frustrated. I enjoyed learning.

Second Questionnaire:

1. Other people not doing what I expected
2. I felt my turn appeared for only short periods of time.
3. None
4. Group answers were unclear
5. Remembering what tools did what
6. Refresh rate of future slants
7. Didn’t know we completed goal - one computer had the
feedback.
8. During the rules voting phase, the answers returned did not
seem to be in the same format as the questions. For example, I
chose 3 viscosity and then saw the selected coefficient was .45 or
something -- what is the relationship of scale?
9. My computer finished before others - not quite as fully
integrated as it needed to be but great fun.
10. Again, it was slow
11. I was frustrated that my group apparently used most of the
same types of obstacles instead of using some variation.
12. As before, the screen wasn’t always consistent. This made it
harder to make/anticipate moves - both mine and those of other
players.

I will address all frustrations from question 14 here as I think the
comments made by participants were especially insightful. As for
comment 1 of questionnaire 1, I would expect participants not to
hear another participant’s yelling if they were dispersed all over
the globe. In response to comment 2 of questionnaire 1, I would
expect participants not to choose too quickly once they learned
how to successfully collaborate in the world. Choosing too
quickly is not an effective strategy just as choosing too quickly in
chess is not a good strategy for winning chess matches. As for
comment 3 of questionnaire 1 and comment 5 of questionnaire 2, I
agree that I should strongly consider adding labels to palette
objects initially during the learning phase. In response to
comments 4, 8, and 9 of questionnaire 1 and comment 10 of
questionnaire 2, I believe there is a place on the Web for slower,
reflective activities. Marbles world is not meant to be a typical

video game experience. In response to comments 5 and 7 of
questionnaire 1, I think I should consider helping out first time
participants by giving them more information about effects until
they understand how to ascertain the timings themselves. In
response to comment 6 on both questionnaires, I agree whole
heartedly that I should update the slant queue immediately instead
of waiting for the next slant change. In response to comment 1 on
questionnaire 2, I believe participants’ actions would come
together more after participating together for a period of time. My
whole objective centers around the belief that my world would
teach better collaborative behaviors. In response to comments 7, 9
and 12 of questionnaire 2, I must make the technology work
acceptably each time as technical problems effected the opinions
of participants greatly, although I believe most expected problems
at some level and that helped keep them enthusiastic. I believe
they saw their feedback as important in the process of making a
better simulation. Technical problems cause me to give up on a
virtual community more than any other factor. I have no reason to
believe I am different in that behavior than a typical Web citizen.
In response to comment 8 of questionnaire 2, I agree that I should
provide more integrated feedback to group decisions. In response
to comment 11 of questionnaire 2, I believe I must provide a mix
of obstacles that make for interesting combinations of strategies. I
have no doubt that better obstacles could have enabled better
designs by participants. Yet, I found two of the groups to have
created very successful looking designs using the obstacles they
were given.

7.3 What To Do Next

I have found the results from this project to be quite encouraging,
yet I believe there are some steps I could take to make the next
go-around even more successful. Most importantly, I need to fix
the technical problems that effected 4 of the 12 simulations. The
server I wrote and used for the project contains very few lines of
code dedicated to the inter-world communications that keep
multiple copies of the world in synch. In fact, each client reports
timing data only once every 50 frames. I can experiment with
more frequent time reports that show promise of correcting
divergent behaviors more rapidly. I can consider stopping a client
process when it gets way ahead of other clients in order to let the
other clients catch up gracefully.

I also can experiment with other interface designs including using
labels for controls until participants feel they no longer need them.
I definitely must consider updating the slant queue feedback as
soon as a slant is chosen by any participant. I had not thought
through how important the upcoming slant information would be
for taking the best action based on the prior participant’s turn. I
would like to allow a user to drag and drop a new obstacle from
the obstacle palette instead of having to click first, move the
mouse, and then drag. Currently, using the external authoring
interface there is no easy way to create a new VRML object
without clicking on something in the world first. Perhaps I can
come up with a creative solution if I give the problem more
thought. I also must consider providing better rules information
for first time participants. Although I believe a seasoned user
could figure out the rules based on interacting with the simulation,
I would not want to lose potential long-term community members
due to initial frustrations.

Once I fix the existing technical problems, I can open up the
world to others in a way that they could help design new rules,
obstacles and effects for inclusion with the simulation. I

personally have 50 or more ideas I would like to implement
myself, but I believe I must allow the community to come up with
ideas. I feel that most of my ideas would be independently
suggested by other participants in due time anyway. As computing
power increases, I believe the obstacles and effects in the world
could become very sophisticated. Marbles world could become
significantly more active than its current implementation and the
marbles might even be able to take on different shapes and
behaviors. Marbles world would not have to exist in a single x-y
plain but instead could include multiple boards stacked on top of
each other along the z-axis. Yet, to really test my ideas and
beliefs, I need to create a community around this project and let
the community drive the project in whatever direction they want.
Perhaps I would become a facilitator more so than a designer. A
community working on a collaborative Web project needs
technical assistance in determining what is possible given
computing trade-offs related to resources. I have experienced the
frustration of working on technical ideas without any guidance as
to what is a reasonable design for a given computing platform.
Many of my Lotus Notes applications were designed without any
sense of whether they could perform well on a computing
platform my users would be using. I need to come up with
reasonable guidelines for obstacle and effect designs of
community members.

In the very long-term, applications like marbles world should be
able to be experienced by hundreds or thousands of participants at
the same time. Server-less, distributed architectures show promise
of being able to support large amounts of users. I can begin to
look at alternate architectures that rely on multicasting in order to
scale up marbles world to larger communities.

Yet, in the short-term, I can consider building other applications
that use the architecture I used for marbles world. I believe this
architecture will work well for group design and play of golf
courses, croquet lawns, ski slopes, and all kinds of applications
where the rules are already somewhat standard and require little
new learning. To me, the interest will continue to be in building
interesting communities on the Web where people meet for
specific purposes that are engaging and educational. I continue to
hope that technologists can develop the infrastructure with which
Web participants can create the communities they want most. I
hope Web surfers will be able to work together to create
interesting worlds. I believe my work shows that many users
would be interested in trying out such communities at least once. I
found all my subjects to be very enthusiastic before, during, and
after their initial two simulations. In fact, all but one requested to
be invited back once I spent more time building a better
application.

I have learned that building networked applications is very
difficult to do by oneself. The server code turned out not to be the
monster I had anticipated thanks to existing Java classes that hid
the complexity. Yet, the testing certainly was difficult when
working with computers that physically existed at least 20 feet
from each other. I can invest more time in creating better test
methods. Lastly, I must continue to consider new technologies to
use when implementing 3D multi-user collaborative worlds on the
Internet. The Java 3D API from Sun Microsystems, Inc. shows
great promise as a delivery platform. As my creative thought
process settles into more concrete paths of action, I can apply
better engineering techniques to quantify and test my development
efforts. Through this project, I have learned that the creative
thought process can continue for weeks at a time. I need to run

more concrete tests before I can begin to weed out ideas based on
merit.

ACKNOWLEDGEMENTS
I wish to acknowledge my advisory council: Dr. Michael Danchak
and Don Merusi at the Rensselaer Polytechnic Institute; Dr. Tom
Furness at The University of Washington, who directs the Human
Interface Technology (HIT) Laboratory - a place where I was
fortunate to access a lot of information, use a wide range of
computing resources, and debate with a talented group of staff
researchers and students.

More generally, I must acknowledge all the individuals out there
in cyberspace who responded to my email inquiries requesting
more information on VRML, Java APIs, and philosophical
questions. I must also thank Ian and Shirley Campbell for helping
with the tedious job of proof-reading into the wee hours of the
morning. Lastly, I want to acknowledge specific colleagues at the
HIT Lab who helped me refine my project goals and kept me
going during my slower periods of progress: Dace Campbell, a
virtual architect, helped me realize that I should better leave the
design of public cyberspace to others and instead focus on what
happens inside the architecture; Susan Tanney, also a virtual
architect, kept me excited about the significance of my work;
Suzanne Weghorst, a human factors specialist, provided me with
other opportunities to practice the tools of the trade in VRML 2
world creation by assigning me meaningful lab projects; Mark
Billinghurst, a cyberspace engineer, debated my approach to
solving problems; Toni Emerson, a cybrarian, found me relevant
magazine articles and books which helped me think through my
ideas.

REFERENCES
[1] Mead Paper, The History of Paper,
<http://www.mead.com/mead/history.html> (Accessed 28 January
1997)
[2] Blum, Daniel J. and David M. Litwack, Addison-Wesley, The
E-Mail Frontier Emerging Markets and Evolving Technologies,
DonMills, Ontario (1994)
[3] Community Access to Technology Assisted Learning
(CATAL) , History of the Internet,
<http://tdi.uregina.ca/~wetsch/internet/history.html> (Accessed 28
January 1997)
[4] Reid, Elizabeth M., Electropolis: Communication and
Community On Internet Relay Chat,
<http://www.ee.mu.oz.au/papers/emr/electropolis.html>
(Accessed 28 January 1997)
[5] Bartle, Dr. Richard, Interactive Multi-User Computer Games,
<http://www.oise.on.ca/~jnolan/muds/about_muds/mudreport>
(Accessed 28 January 1997)
[6] University of Illinois Alumni News, From Plato to Iris: The
force behind Lotus Notes,
<http://ftp.cs.uiuc.edu/CS_INFO_SERVER/ALUMNI_INFO/new
sletter/v1n2/iris.html> (Accessed 29 January 1997)
[7] Reid, Elizabeth M., Cultural Formations in Text-Based Virtual
Realities, <http://www.ee.mu.oz.au/papers/emr/cult-form.html>
(Accessed 29 January 1997)
[8] Simulation Interoperability Standards Organization, The DIS
Vision: A Map to the Future of Distributed Simulation,
<http://siso.sc.ist.ucf.edu/docref/general/vision/index.htm>
(Accessed 29 January 1997)

[9] Roehl, Bernie, Distributed Virtual Reality -- An Overview,
<http://sunee.uwaterloo.ca/~broehl/distrib.html> (Accessed 29
January 1997)
[10] Mandeville, Jon et al, GreenSpace: Creating a Distributed
Virtual Environment for Global Applications,
<http://www.hitl.washington.edu/publications/p-95-17>
(Accessed 11 February 1997)
[11] Videotopia, Arcade Games,
<http://www.videotopia.com/games.htm> (Accessed 11 February
1997)
[12] VRML Architecture Group, The Virtual Reality Modeling
Language Specification,
<http://vag.vrml.org./VRML2.0/FINAL/spec/index.html>
(Accessed 31 January 1997)
[13] The World Wide Web Consortium, HyperText Markup
Language (HTML) <http://www.w3.org/pub/WWW/MarkUp/>
(Accessed 31 January 1997)
[14] blaxxun interactive, Blaxxun Community Platform,
<http://ww3.blacksun.com/products/index.html> (Accessed 1
March 1997)
[15] OnLive! Technologies, Inc., OnLive! Product Line,
<http://www.onlive.com/prod/> (Accessed 4 March 1997)
[16] Sony Corporation, What's It About,
<http://sonypic.com/vs/about.html> (Accessed 1 March 1997)
[17] OZ Interactive Inc., The Future is Now,
<http://www.oz.com/> (Accessed 12 March 1997)
[18] Mandeville, Jon et al, GreenSpace: Creating a Distributed
Virtual Environment for Global Applications,
<http://www.hitl.washington.edu/publications/p-95-17>
(Accessed 11 February 1997)
[19] Sun Microsystems, Inc., Software Solutions: Sun's Java
Products <http://www.sun.com/java/sw.html> (Accessed 14
February 1997)
[20] Living Worlds, Living Worlds: Making VRML 2.0
Applications Interpersonal and Interoperable,
<http://www.livingworlds.com/draft_1/index.htm> (Accessed 13
February 1997)
[21] The Virtual Reality Modeling Language Appendix C. Java
Scripting <http://vrml.sgi.com/moving-
worlds/spec/part1/java.html> (Accessed 9 February 1997)
[22] Yergin, Daniel, Simon & Schuster, New York, NY, The
Prize, (1992)
[23] The VRML Consortium, Members List,
<http://vag.vrml.org/consort/Members.html> (Accessed 19
February 1997)

